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Abstract: This paper addresses a detection problem where sparse measurements are utilized to
estimate the source parameters in a mixed multi-modal radiation field. As the limitation of
dimensional scalability and the unimodal characteristic, most existing algorithms fail to detect
the multi-point sources gathered in narrow regions, especially with no prior knowledge about
intensity and source number. The proposed Peak Suppressed Particle Filter (PSPF) method utilizes a
hybrid scheme of multi-layer particle filter, mean-shift clustering technique and peak suppression
correction to solve the major challenges faced by current existing algorithms. Firstly, the algorithm
realizes sequential estimation of multi-point sources in a cross-mixed radiation field by using particle
filtering and suppressing intensity peak value, while existing algorithms could just identify single
point or spatially separated point sources. Secondly, the number of radioactive sources could be
determined in a non-parametric manner as the fact that invalid particle swarms would disperse
automatically. In contrast, existing algorithms either require prior information or rely on expensive
statistic estimation and comparison. Additionally, to improve the prediction stability and convergent
performance, distance correction module and configuration maintenance machine are developed to
sustain the multimodal prediction stability. Finally, simulations and physical experiments are carried
out in aspects such as different noise level, non-parametric property, processing time and large-scale
estimation, to validate the effectiveness and robustness of the PSPF algorithm.

Keywords: particle filter; Bayesian estimation; radiation sources localization; nonparametric
estimation; multi-modality maintenance

1. Introduction

With the growing number of aging nuclear facilities and uncontrollable nuclear incidents,
the ability to efficiently inspect and localize radioactive materials has become an important prerequisite
for rapid rescue missions [1–4]. Under those circumstances, autonomous mobile robots such as
Unmanned Ground Vehicles (UGVs) could be deployed to monitor and locate radiation sources in
hazardous area. Although the topic of sources localization has received a fair bit of attention in recent
decades [5–7], the localization for mixed multi-modal radiation filed formed with several gathered
radiation sources (e.g., multi-point nuclear leakage) has not been carefully investigated and resolved
yet. Our goal is to develop a practicable and nonparametric method to estimate the source number
and parameters (i.e., locations and strength), utilizing sparse measurements collected by a low-cost
Geiger-Müller detector.
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For localizing multiple radiation sources, various formulations of this problem have been
studied extensively [8–17]. Earlier works only deal with separately distributed sources [8–11], that is,
the radiation field could be characterized by several unimodal distributions. Thus source parameters
could be estimated on the basis of the individual distributions, while the cumulative effect of multiple
sources has been neglected [11]. Beyond that, mixture models and stochastic processes have also been
adopted to locate the sources, incorporating the cumulative effect into these statistic models [12–17].
As referenced in [15], Morelande et al. approximates the radiation field as Gaussian mixtures, of which
the component number is selected through exhaustive cases by the CRB criterion [16]. A similar BIC
criterion is utilized in [10], where mixture models with fixed component number are presented to
identify the radiations sources, and then MLE method is employed to estimate parameters. For these
number selection based algorithms, a large amount of time has been spent on the exhaustive prediction
under different number conditions, feasibility can’t be guaranteed when experimental scene is scaled
beyond four sources. In addition, Gaussian Processes [12,13] and Poisson Processes [14] are utilized
to predict the mixture of radiation sources, unfortunately these stochastic processes only work well
when measurements are collected in high density, which is impossible in vehicle-based detection and
sampling situations.

As the source localization procedure can also be deemed as radiation field mapping, we can
transform the estimation problem into the issue of radioactive intensity mapping [13,18,19].
In literature [13], the radiation map is divided into a finite number of grid cells, and dense sampling is
employed to update intensity for each cell. In contrast to the exhaustive approach, Han et al. presents
a topological map to describe the radiation field, whereby spiral trajectory and counter lines are
depicted in literature [19]. Another interesting kind of localization algorithm is based on particle filter.
Chin et al. [20] induced the notion of fusion range to alleviate the mutual impact of multiple sources,
and particle filter coupled with mean-shift technique [21] to estimate source parameters. Although
this Monte Carlo sampling method could estimate the sources in a sequential and nonparametric
manner, it still can’t solve the mutual effects of multiple sources, especially in a scenario where sources
are located in close proximity. Furthermore, the particle filter is poor at consistently maintaining
multi-modality for target distribution [22], that is, particles would quickly migrate to one of the modes
in estimation procedure. Evidently, the inherent unimodal feature hinders the application of particle
filter based methods for the mixed multi-modal field.

Motivated by the above discussion, an estimation formulation combined with multi-layer particle
structure, particle weight correction and balance maintenance module has been conceived and
developed in this article. The PSPF algorithm handles issues of cumulative effect and non-parametric
estimation, and has shown excellent computational performance on dimensional scalability. The main
contributions of this paper are illustrated in the following points:

• The PSPF algorithm introduces a multi-layer state structure instead of a unified space, i.e., particle
swarm of each layer just identifies a single source. This structural improvement, coupled with
sequential estimation and weight suppression operation, can effectively tackle the cumulative
effect that detected total dose rate could not be utilized directly for the prediction model.
Additionally, as the layer extension is roughly linear with processing runtime, the proposed
algorithm shows excellent performance on dimensional scalability while existing methods always
fall into dimension disaster problem.

• Besides the observation probabilistic model, peak suppression factor and swarm distance factor
are also incorporated into the particles weighting process. The peak suppression technique
utilizes the sigmoid function to decrease the weights of particles which possess higher radiation
strength. The latter factor is adopted to avoid sequential cluster collapse as the swarms get too
close in proximity. These factors can efficiently ensure the multimodal balance and speed up
the estimation procedure. Through the synthesized weighting model and sequential multi-layer
prediction, the challenges in mixed multi-modal radiation field have been overcome.
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• Due to the lack of prior knowledge about source number, it is impossible to locate the sources by
pre-defining an accurate source number. In existing algorithms, the ambiguity about source
number is solved by exhaustive method [15,23], which is not a practicable and real-time
solution. Enlightened by the fact that redundant swarms always remain non-cluster or minimal
strength status in prediction procedure (when the swarm number is larger than source number),
the non-parametric performance about source number could be obtained by the multi-layer
prediction structure in our algorithm, as shown in Figures 6 and 8.

• In the parameter estimation phase, a filtering criterion has been conceived and applied after the
mean-shift clustering procedure. This clustering method don’t need to explicitly associate the
cluster centroids with individual radiation sources, while the filtering criterion could determine if
the cluster centroid is available or not. The above mentioned criterion is helpful to simplify the
algorithm structure and improve calculative efficiency.

The structure of this paper is organized as follows: the multi-sources localization problem and
measurement model are formulated mathematically in Section 2. In Section 3, several necessary
state estimation components are reviewed before presenting the algorithm in detail, consisting of
particle filter and mean-shift clustering. Then, the major framework and functional modules of the
proposed method are expounded and clarified in Section 4. In the following section, simulation and
field experiments coupled with quantitative analysis are provided and discussed. Finally, Section 6
concludes this paper and presents some prospects for future work.

2. Problem Statement and Detection Modelling

2.1. Problem Statement

Our research focuses on how to estimate the number and parameters (locations and strength)
of the clustered multiple sources, with the sparse measurements collected by the vehicular GM
sensor. As the cumulative effect of radiation intensity, a multi-modality radiation field is formed
and estimated without exact prior information about source number and intensity. This setting is
applicable and practicable as it can be always encountered in nuclear leakage incidents [1,3], e.g., plant
pipeline leakage, transportation accidents, etc. Compared to the existing particle filter based estimation
methods [5,20], the main difficulties in the multi-modal radioactive scenario are illustrated as below:

(i) As the GM-type detector could just provide a noisy total dose rate in one location, Poisson based
observation model could not be utilized directly in our case. Moreover, the cumulative effect and
mixed radiation field invalidate the gradient prediction methods [24] while only an ambiguous
hotspot could be perceived. Similar dilemma occurs in mixture models [15,16] as no conjugated
distribution exists.

(ii) Considering the limited exploration period and sluggish sensor response, only sparse
measurements could be collected by the GM counter. These spatially separate data always fail to
construct the multi-modality field by regression methods (e.g., Gaussian Processes), as illustrated
in Figure 1c. Furthermore, the peak values of the radiation field don’t coincide with the source
locations as the radioactive cumulative effect.

(iii) As the proposed algorithm is formulated on the basis of particle filter, a structure improvement
should be performed to realize multi-modality maintenance for the target distribution [22].
Additionally, several measurements should be taken to enable the weighting model to process
the collected measurements, which represent the cumulative dose rate in each location.

The multi-source radiation scenario is shown in Figure 1a. It is assumed that the two-dimensional
hotspot is formed by several radiation sources in close proximity, while a mobile vehicle armed with
GM counter is utilized to detect and estimate radiation sources in the surveillance area. Similar to
the settings in [20], let the three-value vector Aj =

{
Ax

j , Ay
j , Astr

j

}
denotes the location and strength

information of the j-st source, for 1≤ j≤ K. The locations Apos
j can be measured in meter and radioactive
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dose rate Astr
j in Gy/h respectively. As gamma-ray complies with the inverse square propagation [25],

the radiation intensity for single source component can be expressed as:

I(S, Aj) =
Astr

j

h2 + |S− Apos
j |

2 exp( ∑
b∈(B∩SAj)

−µblb) (1)

where S indicates the position of measuring point, and h is the height difference between measurement
plane and source plane. B denotes a set of obstacles, and lb and µb denote the thickness and attenuation
coefficient of the obstacles respectively. It could be noticed that no obstacle exists in our setting, as the
issue assumption about radioactive cumulating effect.
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Figure 1. The multi-source radiation scene and problem illustration. (a) The scenario illustration of
multi-source localization. (b) Theoretical radiation strength cloud chart for 4 radioactive sources. (c)
Radiation strength cloud chart with simply GPs regression.

Considering the limited exploration period and sluggish sensor response, it could be seen
that densely sampling radiation field is impracticable in this scenario, instead only spatially sparse
measurements can be obtained in the inspection process, as shown in Figure 1b. Different from actual
multi-modal distribution in Figure 1b, the regressive distribution with these sparse measurements
fails to restore the multi-modality feature of radiation field, demonstrating simple regression [12,13] or
direct mapping methods [19,26] are inapplicable in our detection case. All the difficulties motivate
us to improve the traditional particle filter, whereby the unified state space has been modified into a
multi-layer particle structure, and each layer just identify one radioactive source or not. Additionally,
the peak suppression module is incorporated into the particle weighting procedure, which can obtain
excellent performance of multi-modality maintenance in the state space. The details of the PSPF
algorithm can be seen in Section 4.

2.2. Detection Modelling

Instead of the sensor network applications [5,15,16,20], the radiation sensor is mounted on the
mobile vehicle, which inspects the hazardous zone through sampling trace points. As the GM-type
sensor measures radiation intensity by counting the ionization flux, i.e., counts per second (CPS),
the multi-source radiation field can be measured by the cumulative effect of the multiple sources,
as expressed in the following:

Ii = Ei ·∑K
j=1 I(Si, Aj) + Bi (2)

where Ii denotes the total dose rate at the location Si, and Aj denotes the j-st radiation source.
Ei represents the conversion constant utilized to convert the unit from CPS to Gy/h in our application.
Bi indicates the background radiation which is naturally present due to radio-isotopes.
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According to the measuring principle described above, Poisson distribution could be employed
to weight the estimated particles if a single source exists. In fact, Poisson distribution is always utilized
to handle the counting event whereby expected count is λ and actual count is k, as illustrated as
Equation (3):

P(X = k|λ) = λke−λ

k!
(3)

Evidently, above Poisson-based weighting model could not be incorporated into the algorithm
scheme directly, for the reason that only total radiation intensity is gauged by the GM sensor. The key
idea of our solution is to split measurements into individual hypothesis for each particle swarm,
which is expounded in detail in Sections 4.1 and 4.2

3. Preliminary Estimation Methods

3.1. Particle Filter

With the simplicity, universality and extensive applications in localization field, particle filter has
become one of the most famous estimation methods in Bayesian estimation. This method discretely
depicts target distribution by a set of weighted state particles, and iteratively motivates particles to
move towards the actual distribution [27]. The flowchart of particle filter is illustrated in Figure 2.
The iterative estimation in particle filter can be divided into two phases: prediction and updating.
The updating phase approximates the posterior distribution by inputting the current observation,
while prediction step estimates the prior distribution through state transition factor without current
observation factor. According to the Bayes formula and Markov hypothesis [28], this sequential Monte
Carlo model can be represented as follows:

p(x0:t|y1:t) updating
→

∫
δ(x0:t)

p(x0:t |y1:t)
q(x0:t |y1:t)

q(x0:t|y1:t)dx0:t

=
∫

δ(x0:t)
p(yt |x0:t ,y1:t−1)p(xt |x0:t−1,y1:t−1)p(x0:t−1|y1:t−1)

p(yt |y1:t−1)q(xt |x0:t−1,y1:t)q(x0:t−1|y1:t−1)
q(xt|x0:t−1, y1:t)q(x0:t−1|y1:t−1)dx0:t

prediction
→

η · p(x0:t−1|y1:t−1) ·
∫

xt
δ(xt)

p(yt |xt)p(xt |xt−1)
q(xt |xt−1,yt)

q(xt|xt−1, yt)dxt

(4)
where p(x0:t|y1:t) and p(x0:t−1|y1:t−1) are the posterior probability for the whole time series until time t
and t − 1. q(xt|yt, xt−1) indicates the proposal distribution at time t incorporating the particle xt−1,
and δ(xt) is dirac function denoting the discrete sampling process for target distribution.
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Considering the Bayes formula and Markov hypothesis, the approximation for current state
particle xt can be induced as:

p(xt|yt, xt−1) = p(x0:t |y1:t)
p(x0:t−1|y1:t−1)

= η ·
∫

xt
δ(xt)

p(yt |xt)p(xt |xt−1)
q(xt |xt−1,yt)

q(xt|xt−1, yt)dxt

≈ ∑N
i=1 w̃(xt|x(i)t−1) · δ(x(i)t )

(5)

where proposal distribution q(xt|yt, xt−1) is set as transition model p(xt|xt−1), thus particle weight
model can be simplified to be wt(x(i)t ) ∝ p(yt|x(i)t ) ·wt−1(x(i)t−1). As estimated radiation field is assumed
to be quasi-static, the transition model p(xt|xt−1) obeys Gaussian distribution, and the observation
model can be represented by Poisson distribution, as shown in Equation (3).

3.2. Mean-Shift Clustering

Mean-Shift procedure is a non-parametric clustering approach on the basis of kernel density
estimation [21]. Given the current state of particles, the mean-shift method can rapidly estimate
the density distribution in state space, and motivates the sampling points towards local maximum,
realizing the cluster labelling in the end. Benefiting from the versatile and rapid characteristic, the
mean-shift method has been widely employed in multi-modality localization problem [21,29,30],
and also provides robust and reliable clustering results for the calculating model. The process of
mean-shift clustering is actually an iterative optimization procedure, whereby the state shift M(x)
could be expressed as: {

M(x) = ∑P w(pi)·φH(pi−x)·(pi−x)
∑P w(pi)·φH(pi−x)

φH(x) = (2π)−3/2|H|−1/2 exp(− 1
2 xTH−1x)

(6)

where φH(x) is the Gaussian kernel function used for density estimation, H is a positive definite matrix
denoting the bandwidth in each dimension, and M(xi) indicates the shift vector pointed to state xi.

In our application of multi-source localization, several initial states should be randomly sampled
in the space, and each sample needs to find the local maximum individually. Thus the global maximum
and cluster labelling could be realized through these samples. In contrast to general clustering methods
(i.e., GMM, k-means), mean-shift technique is a non-parametric estimation, which is helpful in reducing
the burden on parameters tuning and dimensional simplicity. In addition, this method shows a good
performance about noisy robustness, which would be discussed in Section 5.

4. Proposed Algorithm Design

This section mainly describes our proposed algorithm for localizing multiple radiation sources in
a cross-mixed environment (i.e., a radiation field of which the strength is affected by several sources),
utilizing the dose measurements in different places by vehicular radiation detector. Given a newly
acquired or selective measures, the proposed algorithm can refine the location and strength messages
for each radiation source. The flowchart of the PSPF algorithm is illustrated as Figure 3.

The algorithm starts with the particle initialization for the multi-layer particle swarms, and each
particle swarm is utilized to estimate the parameters of a single radiation source. For a new sensor
measurement, the above multi-layer particle swarms can be estimated sequentially, that is, the later
particle swarm should be predicted on the basis of the estimation results of the previous layers.
Furthermore, the particle aggregation process for particle swarm can be summarized into two
phases, i.e., weighting and resampling. The weighting step is to approximate the weight for each
state particle in current swarm. Compared with the traditional particle filter, this step also takes peak
suppression factor and swarm distance factor into account, to ensure the multi-modality maintenance
and estimated stability. Then these weighted particles go through the resampling step to be relocated
into higher probabilistic states. After the resampling process, mean-shift clustering technique and
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specific filtering criteria are applied to determine whether a valid centroid exists in current particle
swarm. Above estimation procedure (except for particle initialization) should be repeated for all the
pre-defined particle swarms, and finally the average confidence score for all existing measurements
are approximated to determine whether to continue the estimation loop.
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Besides the main estimation procedure, the configuration maintenance has also been conceived
and integrated into the proposed scheme. The module works after the confidence calculation step in
each iteration. It records the multi-layer configuration with the highest confidence score, which could
be restored if the multi-modal balance is broken. In this perspective, the maintenance module is
actually a protection mechanism in the prediction procedure.

As expounded above, the proposed algorithm addresses the following problems: (i) the
multi-source localization problem in mixed radiation field; (ii) non-parametric estimation about
the number of sources; (iii) rapid and steady prediction on individual source parameters implicitly.

4.1. Particle Initialization

At initial time, particles in each layer should be initialized as follows.
Let Ps =

{
p(ti)

r,s |r = 1, · · · , Mr

}
be the s-st particle swarm in the configuration space
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The number of particle swarms Ms reflects the expected source number in the surveillance area.
When the pre-defined swarm number is larger than the actual source number, it could be observed
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s| affects the state diversity of estimated target.
That is, a larger particle number will result into a more accurate estimate, otherwise calculation
accuracy is reduced. Furthermore, each particle state pr,s∈s should be associated with a weight w(pr,s)
to measure the probability that an actual radiation source exists in the location pr,s. However, as the
collected measurements only represent total dose rate, measurements should be split into individual
hypothesis with support of multi-layer state structure. That is, the estimation for current particle
swarm should consider the previous candidated sources located by previous swarms in the weighting
step, as shown in Equation (8). The multi-layer particle structure, coupled with the sequential iterative
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prediction, successfully integrates the multi-source cumulative measurements into the particle filter
framework and the Poisson based weighting model.

4.2. Synthesized Particle Weighting

After initializing the particles, the corresponding particle weights should be calculated to evaluate
the likelihood that an actual radiation source exists in the state. Although there’s no prior information
about source number and distribution, the mixed multi-modal field can still be estimated by the aid
of multi-layer state structure and sensor measurements. Besides the Poisson observation model (as
stated in Section 2.2), peak suppression factor and swarm distance factor are also integrated into
the weighting process to realize multi-source localization. The synthesized weighting model can be
expressed as follows:

wr,s
syn = wr,s

obs(Irand(n), I′s,n) · wr,s
ps (pr,s, θps) · wr,s

dist(Cs, pr,s) (7)

In the above equation, synthesized weighting model consists of three components: observation
weighting model wobs, peak suppressed correction wps and swarm distance correction wdist. These three
components will be described detailedly in this part.

4.2.1. Detector Weighting Model

Assume that pr,s is the r-st particle state in the s-st particle swarm, and {Cs}Ms
s=1 denotes the set of

candidated centroids for each layer in latest iteration. Then, the observation likelihood for the particle
pr,s given actual measurement m(Si) can be expressed as below:

wr,s
obs(m(Si), pr,s, C−s) =

p(m(Si)|I′(pr,s, C−s))

p(bI′(pr,s, C−s)c|I′(pr,s, C−s))
(8)

where C−s denotes the set of candidated sources exclusive of the current layer centroid. The function
p(·) denotes the Poisson observation model described in Section 2, whereby the measurement m(Si) is
regarded as actual count and expected dose rate is the desired count. Additionally, the normalized
constant p(bI′c|I′) is added to the formulation such that subsequential correction can be conducted in
the same scale, and b· c depicts the floor operator.

Benefited from the multi-layer structure, the proposed method embeds the candidated centroids
into the Poisson based detection model, and this improvement provides theoretical foundation
for the mixed multi-source localization problem, which is infeasible and impracticable in existing
research [16,20,31]. Furthermore, this weighting model is adopted alone in the confidence calculation
step (as described in Section 4.5), while peak suppressed factor and swarm distance factor are just
employed in the weighting process.

4.2.2. Swarm Distance Correction Model

In the sequential multi-layer sampling procedure, the collapse of one particle swarm may result
in a sequential collapse of the whole estimation structure. This phenomenon always occurs when two
particle swarms get too close in proximity, as the existence of one particle centroid can significantly
reduce the particle weights in another swarm. To avoid the sequential collapse, sigmoid function is
adopted to sharply reduce the particle weights when one particle swarm is close to another swarm
centroid. When these particle centroids get separated from each other, the distance correction factor
stays near 1.0; otherwise the factor decreases sharply as the distance is smaller than the offset value
θdist, as illustrated in Figure 4a. The distance correction model is given in the following equation:

wr,s
dist(pr,s, C−s) =

1

1 + exp[ θdist−dist(pr,s ,C−s)
bdist

]
(9)
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where θdist indicates the offset value of the sigmoid function, bdist is the scale parameter, and dist(·)
denotes the minimal distance between current particle and centroids of other swarms.

The introduction of distance correction factor is conducive for maintaining the multi-modality
balance of configuration space, and improves the efficiency and stability of the proposed algorithm.
In the simulations without correction factor, it could be frequently observed that one particle swarm is
replace by another one, then an overall collapse occurs in the estimation procedure. That is, the absence
of distance correction factor will definitely result into estimation failure due to frequent breakout of
the balance. In this perspective, although this correction factor is a small trick, it seems to be essential
for the multi-layer state structure and our proposed algorithm.

Sensors 2018, 18, x FOR PEER REVIEW  9 of 20 

 

where θdist indicates the offset value of the sigmoid function, bdist is the scale parameter, and dist(·) 
denotes the minimal distance between current particle and centroids of other swarms. 

The introduction of distance correction factor is conducive for maintaining the multi-modality 
balance of configuration space, and improves the efficiency and stability of the proposed algorithm. 
In the simulations without correction factor, it could be frequently observed that one particle swarm 
is replace by another one, then an overall collapse occurs in the estimation procedure. That is, the 
absence of distance correction factor will definitely result into estimation failure due to frequent 
breakout of the balance. In this perspective, although this correction factor is a small trick, it seems to 
be essential for the multi-layer state structure and our proposed algorithm. 

 
Figure 4. The particle weight correction curves. (a) The swarm distance correction curve. (b) The peak 
suppressed correction curve. 

4.2.3. Peak Suppressed Correction Model 

As discussed above, the independent application of multi-layer structure can’t achieve the 
expected multi-modality effect, but companied with the peak suppressed correction module to do so. 
The peak suppression module utilizes the sigmoid function to decrease the weights of particles which 
possess higher radiation strength, preventing the existence of unimodal estimate with extremely high 
strength in the state space. The peak suppressed correction model can be expressed as below: 

,
,

,

1
( , ) (1 )

1 [( ) / ]
s r
ps r s ps str

r s ps ps

w p
exp p b

θ α α
θ

= − + ⋅
+ −

 (10) 

where α indicates the vertical tuning parameter for the median point, of which the correction is 
defined as 1−α/2. θps is the offset value of sigmoid function, which is also named as suppressed point 
in our algorithm, and bps denotes the scale parameter. By appropriately tuning suppressed point θps 
and scale parameter bps, the PSPF algorithm can obtain an excellent and robust performance about 
multi-modality maintenance. According to test experience, the suppressed point θps can be set as the 
90% of the maximum measurement, and the scale parameter bps is generally 10%~20% of the space 
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Figure 4. The particle weight correction curves. (a) The swarm distance correction curve. (b) The peak
suppressed correction curve.

4.2.3. Peak Suppressed Correction Model

As discussed above, the independent application of multi-layer structure can’t achieve the
expected multi-modality effect, but companied with the peak suppressed correction module to do so.
The peak suppression module utilizes the sigmoid function to decrease the weights of particles which
possess higher radiation strength, preventing the existence of unimodal estimate with extremely high
strength in the state space. The peak suppressed correction model can be expressed as below:

ws,r
ps (pr,s, θps) = (1− α) + α · 1

1 + exp[(pstr
r,s − θps)/bps]

(10)

where α indicates the vertical tuning parameter for the median point, of which the correction is defined
as 1−α/2. θps is the offset value of sigmoid function, which is also named as suppressed point in
our algorithm, and bps denotes the scale parameter. By appropriately tuning suppressed point θps

and scale parameter bps, the PSPF algorithm can obtain an excellent and robust performance about
multi-modality maintenance. According to test experience, the suppressed point θps can be set as the
90% of the maximum measurement, and the scale parameter bps is generally 10%~20% of the space
range. The peak suppressed correction curve is illustrated in Figure 4b, where the suppressed point is
set to be 0.7.

The peak suppressed module is conceived to solve the multi-source estimation problem by
correcting particle weights with higher radiation strength. To clarify the mechanism of peak suppressed
module, a simulation with two radioactive sources has been performed by the PSPF algorithm.
The simulation scene and weight cloud chart are represented in Figure 5. For convenience of illustration,
two sources are located in a sliced vertical plane, i.e., (1.25, 2.5, 98) and (3.75, 2.5, 90), as shown in
Figure 5a. After the estimation process, the particle swarms finally locate at (1.24, 2.53, 93.44) and (3.68,
2.44, 88.68), with the confidence score 97.62%. To show the effect of peak suppressed module, the right
estimated centroid is fixed while the left estimate is assumed to be any location in the plane. Then
the weight cloud chart for the left centroid can be calculated and obtained, as shown in Figure 5c–h.
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Figure 5c,d illustrate the average weight distributions for overall measurements in the corrected and
non-corrected case. It can be seen that traditional models obviously prefer the locations with higher
strength, while the peak suppressed module effectively restrains this strength preference that may
destroy the multi-modality balance.
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measurements and sources, and the radiation distribution. (c,d) shows the overall weight distributions
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measurement (point1 & point2) in corrected and non-corrected cases.

Furthermore, above strength preference could be observed more clearly in the sequential
prediction process, whereby only one measurement is approximated in one iteration, the selected
test measurements are indicated in Figure 5b. Figure 5f,h have shown the weight distributions in
the non-corrected case, it can be clearly seen that there exists several locations with higher weight
and strength. As stated earlier, the estimation imbalance can be traced back to inherent unimodal
performance of traditional particle filter. This high intensity area will motivate the estimated particles
to stay or drive towards these locations, and finally lead to a unimodal distribution. On the other side,
the weight cloud charts with the peak suppressed correction can be seen in Figure 5e,g. The obvious
difference with the non-corrected case is that weights in high intensity area have been suppressed and
reduced, ensuring the availability of sequential multi-layer prediction in the PSPF algorithm.

4.3. Importance Resampling

Importance sampling process is a common practice in Sequential Monte Carlo methods to replace
particle with low weights to ones with higher weights [27]. The resampling step serves two-fold
purpose: (i) as the iteration progresses, resampling step moves the particles towards the states where
radioactive sources are most likely to exist, providing the operational basis for the sequential estimation;
(ii) after the resampling step, particles should be assigned with the same weights to prevent particle
degeneration and maintain state diversity in practice.

Resampling procedure is accomplished by discretely sampling particles from each particle swarm
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vector denoting source location and strength. The superscript ti indicates the time step number, and 
it would be dropped when no ambiguity exists in the prediction procedure. We could initialize each 
particle swarm ࣪s with uniformly random particles, as the reason that no prior knowledge about 
sources parameters is available. Correspondingly, the particles would be initialized according to 
specific distribution if prior configuration exists. This procedure is named as configuration 
maintenance in our algorithm, which has been described in details in Section 4.5. 

The number of particle swarms Ms reflects the expected source number in the surveillance area. 
When the pre-defined swarm number is larger than the actual source number, it could be observed 
that redundant swarms would always remain non-cluster or minimal strength status in the 
estimation process. Thus the multiple sources could be estimated in a non-parametric manner. For 
each particle swarm ࣪s, the number of particles given by Mr = |࣪s| affects the state diversity of 
estimated target. That is, a larger particle number will result into a more accurate estimate, otherwise 
calculation accuracy is reduced. Furthermore, each particle state pr,s∈s should be associated with a 
weight w(pr,s) to measure the probability that an actual radiation source exists in the location pr,s. 
However, as the collected measurements only represent total dose rate, measurements should be split 
into individual hypothesis with support of multi-layer state structure. That is, the estimation for 
current particle swarm should consider the previous candidated sources located by previous swarms 
in the weighting step, as shown in Equation (8). The multi-layer particle structure, coupled with the 

s,n with normalized weights w̃syn(pr,s). As the infrastructure of multiple particle swarms in the PSPF
algorithm, the resampling procedure with subsequential parameter estimation should be carried out
immediately after particle weighting for each particle swarm. This arrangement aims to maintain
the multi-modality state in configuration space, as well as to ensure the effectiveness of multi-layer
sequential estimation. Additionally, several specific hints should be implemented for resampling step
in practice: (i) A tiny zero-mean Gaussian noise should be added to the resampled particles, to prevent
particle degeneration in the state space. (ii) A certain proportion (i.e., 5~10%) of particles should be
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generated with random distribution, to prevent the low space coverage in later estimation phase when
all particles are around the candidated sources.

4.4. Sources Parameters Estimation

Following resampling step, a state estimation module is employed to predict the candidate source
parameters through appropriate clustering technique and filter criterion. In contrast to traditional
particle filter, the proposed algorithm generates source parameter estimates from each particle swarm
by clustering technique firstly, then the biggest cluster centroid is assigned as the state estimate of
current particle swarm. It should be noted that the filtering criterion is utilized to determine whether
the centroid is a valid estimate, i.e., the particle number of biggest cluster should be larger than
percentage threshold THRpr, and the radiation intensity of centroid larger than intensity threshold
THRstr.

The implementation details of mean-shift technique have been discussed in Section 3.2.
This versatile and rapid clustering method makes possible the efficient global optimization and
sequential multi-layer estimation. Moreover, the characteristic that cluster centroid could implicitly
estimate any radiation source ensures the simplicity of proposed framework, and Gaussian based KDE
method also supplies the robust performance against measurement noise.

4.5. Configuration Maintenance

The last step of the algorithm, configuration maintenance module, records the particle states and
estimated parameters with the highest confidence condition, to the effect that all the particle states
could be restored to optimal configuration when multi-sources balance has been broken. Considering
the imbalance nature of the multi-source scene, a large estimated deviation may cause a chain-collapse
of the multiple particle swarms. During the prediction process, the estimation configuration with
optimum field confidence would be persisted all along and updated until a better configuration
emerges. Furthermore, a restore operation should be performed when current field confidence has
been below the optimum value five times in a row, as to maintain the unstable balance. As stated
above, the configuration maintenance step is actually a protection mechanism, which is utilized to
avoid previous estimation procedure going to waste due to cluster collapse.

In the maintenance procedure, the calculation of radiation field confidence is essential and
accomplished by Poisson distribution model with all the sensor measurements, as expressed in the
following:

F =
1
N

N

∑
i=1

wobs(m(Si), {Cs}Ms
s=1) =

1
N

N

∑
i=1

p(m(Si)|I′(Si, {Cs}Ms
s=1))

p(
⌊

I′(Si, {Cs}Ms
s=1)

⌋
|I′(Si, {Cs}Ms

s=1))
(11)

where {Cs}Ms
s=1 denotes the estimated centroids for each particle swarm, and the definitions of wobs(·),

p(·) and I’(·) are similar to Equation (8). The confidence score is the average observation weight for all
the collected measurements, and this indicator could be utilized to measure the credibility of current
state configuration. Then the configuration updating and restoring operations can be determined on
the basis of indicator.

4.6. The Complete Algorithm

As expounded above, the PSPF algorithm goes through several steps i.e., particle initialization,
synthesized particle weighting, importance resampling, sources estimation and configuration
maintenance, and realizes multiple sources estimation in the strongly coupled radiation field.
The pseudo code of the PSPF algorithm is shown in Algorithm 1.
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Algorithm 1. Specific Flowchart of the Cross-mixed Multiple Radiation Sources Localization Algorithm based on
Peak Suppressed Particle Filter (PSPF)

Inputs: A sequential measurements of the radiation sensor I = {In}N
n=1, consisting of the total dose rate and their

corresponding positions.
Outputs: State set of the predicted radiation sources A = {Ak}K

k=1, each state is a three-vector value consisting of
position and intensity messages.
Notes: {Cs,n}Ms

s=1 denotes the clustered centroids for each swarm. {Bs,n}Ms
s=1 denotes the temporal state set for each

swarm, as shown in L14~L18.
{

pr
s,n
}Mr

r=1 indicates the set of particle states for each swarm. θps and θdist are the
sigmoid offset value in peak suppression model and distance weighted model respectively.
1. for s = 1, . . . , Ms do . Model Initialization
2. for r = 1, . . . , Mr do

. randomly sample the three-value vectors
from state-space and assign them as predicted
particles.

3. ppos
r,s ~rand(pos_min, pos_max);

4. pstr
r,s ~rand(str_min, str_max);

5. end for
6. end for
7. for t = 1, . . . , T do . Sources Localization Starting
8. Initialize the measurement set Iactive = I
9. for n = 1, . . . , N do . iteration for each measurement
10. Select one measurement Irand(n) from active set Iactive
11. for s = 1, . . . , Ms do . iteration for each particle swarm
12. for r = 1, . . . , Mr do . Peak Suppressed Particle Filter
13. for s’ = 1, . . . , Ms do

. construct temporal state set for each particle
{Bs,n}Mr

r=1, consisting of current particle state
and centroids for other swarm.

14. if s’ = s then
15. Bs′ ,n = pr

s,n−1
16. else s’ 6= s then
17. Bs′ ,n = Cs′ ,n−1

18. end if
19. end for
20. Compute the predicted dose rate for current position: . Synthesized Importance Weighting
21. I′s,n = intensity_prediction(Bn, Ipos

rand(n)) . according to expression (2)
22. Compute the synthesized weight for each particle:

. according to expression (9), (10), (11) and (12)
23. ws,r

syn = ws,r
obs(I′s,n, Irand(n)) · w

s,r
ps (pr

s,n−1, θps) · ws,r
dist(Bn)

24. Resampling: [
{

pr
s,n
}Mr

r=1] = RESAMPLE[
{

pr
s,n−1, ws,r

syn

}Mr

r=1
] . Resampling Procedure

25. for r = 1, . . . ,Mr do
. add Gaussian noise to avoid particle
impoverishment26. Draw εr ∼ N (0, σ2

n) and set pr
s,n = pr

s,n + εr

27. end for
28. end for
29. Select randomly D seeds from current particle swarm
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s,n: . Mean-Shift Clustering Procedure

30. P sub
s,n =

{
pd

s,n|pd
s,n ∈ Ps,n

}D

d=1
31. repeat until convergence for each seed pd

s,n:
32. for d = 1, . . . , D do

. calculate shift vector iteratively and obtain
cluster left according to expression (6)33. ∆pd

s,n−1 = mean_shift(pd
s,n−1, ws,r

syn, bclust)

34. pd
s,n = pd

s,n−1 + ∆pd
s,n−1

35. end for
36. end repeat
37. Cluster the particles and obtain max probability and state

{
Prs,n

max, ps,n
max
}

38. if Prs,n
max> THRpr and [ps,n

max]str>THRstr then

. THRpr and THRstr are the threshold about
minimal probability and strength through
which determine an effective cluster state

39. Cs,n = ps,n
max

40. else then
41. Cs,n = φ

42. end if
43. end for
44. for m = 1, . . . , N do . Confidence and State Estimation
45. Compute the dose rate given predicted cluster {Cs,n}Ms

s=1 and position Ipos
m :

46. I′m = intensity_prediction({Cs,n}Ms
s=1, Ipos

m )

47. end for
48. F = 0

. calculate the confidence of entire radiation
field according to expression (13)

49. for m = 1, . . . , N do
50. F = w̃obs(I′m, Im)/N +F
51. end for
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52. if F > Fbest then . Configuration Maintenance
53. Update the best condition and corresponding state:

{
Cs

best,P
s
best,Fbest

}Ms
s=1

54. count = 0
55. else then
56. count = count + 1
57. end if . best configuration storing and controlling

machine58. if count > THRcount then
59. {Cs,n}Ms

s=1 =
{

Cs
best
}Ms

s=1 {Ps,n}Ms
s=1 =

{
P s

best
}Ms

s=1 . THRcount is the threshold whether to recover
best configuration
. THRpr_end is the threshold whether to pass
over expected probability

60. count = 0
61. end if
62. if Fbest > THRpr_end then
63. break the loop
64. end if
65. Update active measurement set: Iactive = Iactive – Irand(n)
67. end for
68. end for
69. if Fbest > THRpr_end then

. determine whether it’s an effective prediction
by threshold THRpr_end

70. A = φ

71. for s = 1, . . . , Ms do
72. if Cs,n 6= φ then
73. Append Cs,n to A . append non-empty cluster states to the

predicted set A74. end if
75. end for
76. else then . append empty set to A, meaning prediction

failed77. A = φ

78. end if
79. Output predicted radiation sources state A. . Output Predicted Sources

5. Simulation and Experimental Research

In this section, simulations and real-world experiments are completed to evaluate the effectiveness
and performance of the PSPF algorithm. To measure the prediction accuracy of the proposed
method, the deviations about source localization and radiation intensity are simulated and carefully
documented in different experimental factors, e.g., background radiation level, number of radiation
sources and processing runtime, etc. It should be noted that the measuring positions in simulations are
extracted from the real-world detection set, for the sake of comparison and validating the algorithm in
practice. The environment and scenario settings are listed in Table 1.

Table 1. The simulation settings with different scenarios.

Simulation Background Simulation Setting

• size of surveillance area 5 m × 5 m
• origin of detection set real-world measurements (spiral shape)
• range of sources strength 0~1500 nGy/h
• number of particles in each swarm 300

Scene 1

• number of particle swarms 5
• number of radiation sources 3
• parameters about sources (1,2.25,790), (2.25,1,880), (2.75, 2.75,970)

• simulation change factor background radiation level
(with 0, 50, 150, 250 nGy/h)

Scene 2

• number of particle swarms 8
• number of radiation sources 6

• parameters about sources (0.8,1.8,680), (2.5,2.5,870), (4.1,3.8,720),
(2.0,4.3,670), (4.6,2.0,565), (1.8,0.6,820)

• simulation change factor large number of radiation sources

Scene 3

• number of particle swarms 5/8
• number of radiation sources 3/6
• parameters about sources similar to scene 1/scene 2
• simulation change factor processing runtime
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5.1. Simulation Scene 1: Localization with Different Background Radiation

The simulation interface and estimation scenario for three radiation sources is illustrated in
Figure 6. As the background radiation is 100~200 nGy/h in general, four simulation groups with
three radiation sources and different background radiation level are completed to evaluate the
algorithm robustness, as shown in Table 1. Considering the stochastic feature, Gaussian noise with
predefined background as mean whilst half background as standard deviation is attached to the sensor
measurements. Each simulation case has been repeated for 10 times and average performance of the
algorithm is illustrated in Figure 7.
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Figure 7. Localization and strength error with different background radiation. (a–d) respectively
illustrates the estimation results with background radiation level of 0, 50, 100 and 200 nGy/h.

Figure 7 presents the results of three sources localization with different background levels, and the
overall field belief for all sensor measurements reaches 97.62%, 94.88%, 92.73% and 89.65% respectively.

The results analysis is listed in the following:

(i) Numeric simulations show that PSPF algorithm works well in the above four conditions, i.e., 0,
50, 100 and 200 nGy/h background radiation for each case. However, more iterations are required
to produce accurate prediction as the background increases. Especially with the 200 nGy/h
background level (e.g., the noise almost accounts for 20% of the signal), 8 iterations are taken to
produce a relatively stable and accurate estimates.

(ii) In the term of false positives and negatives, all the estimates correspond to the correct sources,
that is, no more or less cluster centers are produced in each simulation. As 5 candidate
particle swarms are employed for estimation, it can be observed that two particle swarms
remain non-clustered status along the whole prediction process. The phenomenon and
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simulation results validate the non-parametric property about source number determination in
the proposed algorithm.

(iii) From above simulation results, we can see the final confidence score increases to a high level
even in large background noise, validating the robustness and practicability of the algorithm. In
addition, a great improvement on field belief can be observed after several iterations, while the
remaining procedure is just local correction on candidate parameters. This fact indicates the
necessity of the iteration over sensor measurements.

5.2. Simulation Scene 2: Large-Scale Multiple Sources Estimation

The scalability of source number is an important indicator for any localization algorithm
without prior sources knowledge. In our case, the number of required particles maintains a linear
relationship with the particle swarm number, rather than growing exponentially as the source number
increases. The linear computational complexity is due to the sequential particle swarm estimation and
non-parametric property about source number.

This scenario illustrates the scalable performance for 6 actual sources and 8 particle swarms
with 100 nGy/h noise in the surveillance area, which would cause analytical intractability in other
existing algorithms. The simulation layout and estimation scenario are shown in Figure 8. In particular,
all the measurements (only 21 points) are regressed simply with Gaussian Processes Regression to
approach the actual radiation field (as Figure 8b). Evidently, the simple regression method fails to
locate the multiple radiation sources with sparse measurements, and that’s the purpose of developing
the PSPF algorithm.
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Figure 8. The simulation scenario for 6 radiation sources localization. (a) Theoretical radiation strength
distribution. (b) Radiation strength distribution with simply GPs regression. (c) The estimation results
of the multiple-layer PSPF algorithm.

Figure 9 shows the progression of the PSPF algorithm for large-scale sources localization
(6 radiation sources and 8 particle swarms). The estimation error and confidence score are presented in
Figure 10. It can be seen that the state particles gradually cluster and move toward the actual radiation
parameters, and two state particle swarms always remain non-clustered status all along the process.
Additionally, quantitative analysis in Figure 10 indicates that confidence score goes steadily up whilst
the convergence for source estimates works well over time, and the final confidence belief reaches
91.07%. Although the confidence score declines a little in comparison with three sources case (as
shown in Section 5.3), above facts validate the excellent performance in large-scale sources localization,
i.e., the number scalability of the PSPF method. Figure 10c indicates that the proposed algorithm
progresses smoothly and the running time for each step is around 58 s, meaning 0.35 s per particle
swarm estimation.
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5.3. Simulation Scene 3: Processing Runtime Test

As processing runtime is important for dimensional scalability and calculative tractability of the
proposed algorithm, three experimental groups with different swarm number and source number are
completed in this scenario, to explore the related factors processing runtime. The settings of swarm
number and source number are (8,6), (8,3) and (5,3) respectively. The simulation is performed on a
personal computer with 2.60 GHz Intel Core i5 and 4 GB RAM, the average runtime and two times
standard deviation for three cases are presented in Figure 11.
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As illustrated above, the statistical analysis of this scenario mainly explores the relationship
among running time, particle swarms number and actual radiation source number. By comparison of
different cases, we can obtain two conclusions:
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(i) Processing runtime are roughly linear to the pre-defined particle swarms number, while the
number variation of actual radiation sources nearly does not change the estimation duration.
The linear complexity with swarm number benefits from application of the multi-layer swarm
structure, which transforms dimensional scalability into swarm number scalability.

(ii) The average processing speed for particle swarm prediction is respectively 0.345 s, 0.342 s and
0.336 s in three cases, that is, the prediction period for one swarm estimation is almost the same.
The phenomenon demonstrates once again that PSPF algorithm can handle the multi-sources
localization problem in a linear complexity with the pre-estimated particle swarm number.
Additionally, this fact also indicates that further timeliness research may focus on the operations
in the swarm estimation procedure.

5.4. Field Experiment for Two Radiation Sources Localization

The PSPF algorithm has been experimentally verified utilizing Geiger-Muller counter mounted
on a mobile manipulator, and the self-developed mobile platform is also equipped with 7-DOF
manipulator, wireless device, wheel odometer and visual cameras, as shown in Figure 12a. The GM
tube (70031, VACUTEC) can capture the ionizing energy ranging from 35 KeV~1.3 MeV, and the
conversion constant Ei provided by manufacturer is 1/16, i.e., 16CPS equals to 1 µGy/h. Considering
the health hazards of radioactive rays, two point sources with low dose rate (100 µCi, Co-60) were
employed for the localization experiment, which was carried out in a radiation sources repository
(one radiation source is welded in the steel stick). These two radiation sources were placed in 3 m
apart from each other, i.e., located at (1.0, 2.5) and (4.0, 2.5) in the surveillance area. Furthermore,
the radiation distribution was predicted simply with GPs method in advance, which was unable to
identify the source locations with sparse measurements, as illustrated in Figure 12d. As referenced
in [32], a spiral detection trajectory was adopted for better detection efficiency and area coverage,
which is also employed in previous simulations for the sake of comparison.
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Figure 12. The localization experiment for two radiation sources. (a) is the global scene of the
experiment. (b,c) shows the two radiation sources and corresponding containers respectively.
(d) illustrates the source locations, sampling points and measurements cloud chart with GPs regression.

Together with these sparse measurements and three particle swarms, the PSPF algorithm was
performed for the field localization scenario, and the background dose rate could be obtained
through the handheld-type radiation detector, i.e., the dose rate ranging from 260 nGy/h~290nGy/h.
The proposed state estimation method was eventually carried out with 275 nGy/h background
radiation, and the quantitative analysis is presented in Figure 13, including localization error, overall
field belief and the regression surface about dose measurements deviation.

As shown in Figure 13a,b, the estimation procedure enters the steady phase in 5 time steps,
when the clustered estimates are (1.20, 2.56, 5588.79) and (3.98, 2.54, 6244.24), and the overall confidence
score reaches to 91.31%. We can obtain several conclusions from the field experiment: (i) Even with
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sparse measurements (21 points), accurate estimates could still be obtained, and the non-parametric
property about number of radiation sources also works well. The prediction results validate the
effectiveness and practicability of the PSPF algorithm. (ii) Figure 13d shows the regressive surface of
detection deviation between actual measurements and estimation results. It could be seen that the
deviations located close to sources are always negative while the ones far away are positive, which is
due to the occlusion of the mobile platform. Furthermore, the maximum residual (427.5 nGy/h) nearly
takes up 10% of the radiation strength. The violent fluctuation of the surface verifies the robustness of
PSPF method in another aspect. (iii) The total runtime of PSPF algorithm is about 260 s (15 time steps),
meaning 0.275 s for each sensor reading per particle swarm. This processing speed is sufficient for the
multiple sources localization task.
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6. Conclusions

In this paper, a novel particle filter based method is conceived and developed to handle the
multimodal estimation problem in mixed radiation field with sparse measurements. The PSPF
algorithm constructed combines sequential multi-layer estimation and peak suppression technique to
achieve the multimodal maintenance of the particle swarms. Benefiting from the multiple swarms
setting and specific centroid filtering criteria, the non-parametric property about source number has
be obtained and verified through simulations and experiments. Additionally, a distance correction
model and a configuration restoring mechanism have been conceived and implemented, improving
the stability and convergent performance of the algorithm. Simulations and field experiment have
been conducted and verified in several aspects, i.e., background radiation level, radiation sources
number, processing speed and non-parametric property, all the experimental results have validated
the robustness and practicability of the PSPF method. It should be noted that our algorithm tackles
with the multiple sources localization problem in cross-mixed radiation field, with excellent features
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of non-parametric and large-scale estimation about source number. Our future work is to establish a
dynamic regulation mechanism to further improve the prediction accuracy and convergent speed.
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