
TARE: A Hierarchical Framework for Efficiently Exploring
Complex 3D Environments

Chao Cao, Hongbiao Zhu, Howie Choset, and Ji Zhang

Abstract— We present a method for autonomous exploration
in complex three-dimensional (3D) environments. Our method
demonstrates exploration faster than the current state-of-the-art
using a hierarchical framework – one level maintains data densely
and computes a detailed path within a local planning horizon,
while another level maintains data sparsely and computes a
coarse path at the global scale. Such a framework shares the
insight that detailed processing is most effective close to the robot,
and gains computational speed by trading-off details far away
from the robot. The method optimizes an overall exploration
path with respect to the length of the path and produces a
kinodynamically feasible local path. In experiments, our systems
autonomously explore indoor and outdoor environments at a high
degree of complexity, with ground and aerial robots. The method
produces 80% more exploration efficiency, defined as the average
explored volume per second through a run, and consumes less
than 50% of computation compared to the state-of-the-art.

I. INTRODUCTION

We consider the problem of exploring three-dimensional
(3D) spaces unknown a priori with an autonomous robot. Such
a problem remains challenging as the problem has to deal with
two tasks simultaneously – 1) online updating a representation
of the environment to keep track of explored areas, and 2)
searching the representation for a continuous traversable path
to guide the exploration. In cases where the environment
is large-scale, structurally complex, and 3D, the problem
becomes computationally complex, and ensuring complete
exploration of the environment can become a challenge.

The benefit of our method is that it can explore 3D spaces
faster than the current state-of-the-art. The strength of the
approach is based on a hierarchical framework to separate
the processing at two levels. The first level maintains a high-
resolution representation of the environment surrounding the
robot, namely, the local planning horizon (green box in Fig.
1). Within that, a kinodynamically feasible path is generated
for the robot to follow. The second level maintains a low-
resolution representation and computes a path connecting
distant areas, namely subspaces (solid green cubes in Fig. 1),
in the global environment. The insight of such a framework
is that detailed processing is most effective in the vicinity of
the robot, while limited processing provides sufficient utility
far away from the robot. The framework performs a bulk of
the processing inside the local planning horizon and trades-off
details for fast processing at the global scale.

The method first plans a path through the global representa-
tion. Such a path identifies the areas in the robot’s free space

TARE is named after an effort to develop Technologies for Autonomous
Robot Exploration. All authors are with the Robotics Institute at Carnegie Mel-
lon University, Pittsburgh PA. Emails: {ccao1, hongbiaz, choset,
zhangji}@cmu.edu.

Local detailed path

Global coarse path

Local planning horizon

Global subspace

Fig. 1. Illustration of our exploration framework. Inside the local planning
horizon (green box), data is densely maintained and a local detailed path is
computed (dark-blue curve). At the global scale, data is sparsely maintained
in distant subspaces (solid green cubes) and a global coarse path is computed
(light-blue curve). The local path and global path are connected on the
boundary of the local planning horizon to form the exploration path.

that requires detailed exploration, hence the need for a detailed
path to guide the robot to explore locally (green box in Fig. 1).
The method uses the path through the global representation to
move over large distances to areas throughout the free space
(solid green cubes in Fig. 1). Combination of the paths at both
levels allows the robot to explore areas in a sequence jointly
determined by local and global information.

Our method is evaluated using both ground and aerial
robots. We show results where the ground robot explores
the interior of a complex multi-storage building in physical
experiment and the aerial robot explores a large-scale outdoor
environment in simulation. We compare the results to state-
of-the-art methods and conclude that the proposed method
produces 80% more exploration efficiently, defined as the
average explored volume per second, and uses computation
less than 50% of the state-of-the-art methods.

Further, we release a software environment for benchmark-
ing exploration algorithms and facilitating the development of
complete autonomous navigation systems. The environment
contains representative simulation environment models, fun-
damental navigation modules, e.g. collision avoidance, terrain
traversability analysis, way-point following, and visualization
tools. Our algorithm code is made publicly available1.

II. RELATED WORK

The problem of autonomous exploration has been tackled
from multiple angles. The approach described in this paper is
based on key results in information theory, frontier-based ex-
ploration, topological exploration, and a few random sampling-
based methods briefly discussed in this section.

Information Theory: A popular approach in solving the
exploration problem is using information theory. The methods
maximize the information gain over the next few actions [1]–
[4]. The above-mentioned work are also extended to solving

1Sim. environment and source-code: www.cmu-exploration.com

www.cmu-exploration.com

the multi-robot exploration problem [5]–[7]. In summary,
majority of these existing methods rely on greedy strategies,
where efficiency is limited due to the methods being myopic.
In contrast, our method seeks the optimal exploration path as
a whole other than maximizing the instant rewards.

Frontier-based Exploration: A common formulation of the
problem uses frontiers, i.e. boundary between mapped and
unmapped areas. When exploring, the vehicle keeps moving
toward frontiers, which extends the boundary of the mapped
areas until the entire environment is explored [8]–[14]. While
most of these methods greedily select frontiers to explore,
Faigl and Kulich’s method determines a minimum set of
viewpoints to cover the frontiers by solving a variant of the
art gallery problem [15]. Similarly, our method also finds a
minimum set of viewpoints but does so by recursively and
randomly sampling the viewpoints.

Topological Exploration: Other approaches model the envi-
ronment with topological representations [16]–[18]. Most of
these approaches divide the environment into topologically
distinct sections, where an exhaustive traversal through the
sections entails complete exploration of the environment.
While these methods focus on topological completeness, our
method aims at producing a detailed map of the environment.

Random Sampling-based Methods: Recent work develops
a few methods based on the Rapidly-exploring Random Tree
(RRT) [19] or Rapidly-exploring Random Graph (RRG) [20].
The methods span RRTs or RRGs in the environment to
find the traversable space, within which the most informative
branch on the RRT or RRG is selected as the exploration path.
Specifically, Bircher et al. propose the Next-Best-View Planner
(NBVP) [21]. The method spans an RRT, the nodes of which
are modeled as viewpoints. The next viewpoint on the branch
that maximizes a reward function is chosen as the navigation
goal. Witting et al. [22] extend NBVP by seeding the RRT with
the vehicle’s trajectory, which allows the vehicle to explore
further in areas passed by previously. Dang et al. improve
the scheme further by proposing the Graph-Based exploration
Planner (GBP) [23]. The method constructs a global RRG
along the vehicle trajectory. When the local area is explored,
the method plans routes based on the global RRG to distant
areas for further exploration. Note that in this method, the
exploration mode and relocation mode are explicitly switched
using heuristics. Recently, Dharmadhikari at al. propose the
Motion primitives-Based exploration Planner (MBP) [24], a
variant of GBP that constructs the RRT with motion primitives,
which produces smoother local paths spanning in constrained
directions. In essence, these methods adopt greedy strategies.
Due to the randomness of RRT and RRG, these methods also
tend to overlook areas that have not been completely explored.

The main contribution of our work is a hierarchical frame-
work to enable highly efficient exploration. The framework
does not involve heuristics, as GBP and MBP, for explicit
mode switch. Experiment comparisons to NBVP [21], GBP
[23] and MBP [24] show that our method explores much more
completely and efficiently while consuming less computation.

III. PROBLEM DEFINITION

Define Q ⊂ R3 as the work space to be explored. Let
Qtrav ⊂ Q be the traversable subspace. Define viewpoint v ∈
SE(3) to describe the pose of the sensor onboard the robot,
v = [pv,qv] where pv ∈ Qtrav and qv ∈ SO(3) respectively
denote the position and orientation. Denote L ⊂ SE(3) as the
set of viewpoints along the vehicle past trajectory. We use the
term “surface” to refer to the generalized boundary between
free space and non-free space, the latter includes both occupied
and unknown spaces. Let Sv ⊂ Q be the surfaces perceived by
the sensor at v. Note that the same surface can be perceived
from multiple viewpoints. The perceived surfaces so far are

S =
⋃
v∈L
Sv. (1)

Here, S contains covered surfaces, denoted as Scov ⊂ S , and
yet uncovered surfaces, denoted as S̄ = S \ Scov. We would
like to find the shortest path, which when followed by the
vehicle covers S̄. The path must meet kinodynamic constraints.
Let vcurrent be the viewpoint located at the vehicle’s current
sensor pose. Our problem can be defined as follows.

Problem 1: Given S̄ and vcurrent, find the shortest path
T ∗ formed by viewpoints v1,v2, ..., which when followed
by the vehicle covers S̄, such that vcurrent ∈ T ∗, and T ∗ is
kinodynamically feasible.

Problem 1 is solved repetitively at each planning cycle. We
use S̄ to compute the exploration path. When executing the
path, we online update S with up-to-date sensor readings,
processing both displaced and newly perceived surfaces. Then,
we move surfaces become covered from S̄ to Scov, and use S̄
in the next planning cycle, hence the exploration continues.

IV. METHODOLOGY

A. Viewpoint Sampling

We define the criteria for a surface point to be covered by
the sensor. Consider a surface patch centered at ps ∈ Q with
normal ns ∈ R3 pointing toward the free-space side, the center
point on the surface patch is covered by viewpoint v, if

|ps − pv| ≤ D, (2)
ns · (pv − ps)/|ns||pv − ps| ≥ T, (3)

where D and T are two constants constraining the relative dis-
tance and orientation of the surface patch w.r.t. the viewpoint.
Such criteria encourage the surfaces to be perceived well. In
practice, D is set to be shorter than the sensor range.

Define H ⊂ Q as the local planning horizon as shown in
Fig. 2. Let Htrav ⊂ H be the traversable subspace identified
by considering collision and connectivity, and let CHtrav be the
corresponding configuration space considering rotation and
translation. Define S̄H ⊂ S̄ as the uncovered surfaces that
can be perceived from viewpoints in CHtrav. The problem of
viewpoint sampling is to select a minimum set of viewpoints
in CHtrav to cover S̄H. Let us use S̄v ⊂ S̄H to denote the
uncovered surfaces to be perceived from v ∈ CHtrav. The
reward of v is defined as the area of S̄v, denoted as Av.

Fig. 2. Illustration of mathematical definitions. The green box represents
the local planning horizon H. The solid green squares represent the exploring
subspaces Gh, h ∈ Z+. The dark-blue curve is the local path Tlocal. The
light-blue curve is the global path Tglobal. The dark-blue dot on Tlocal is the
current viewpoint vcurrent. The light-blue dots are viewpoints v1

boundary and
v2
boundary on the boundary of H where Tlocal and Tglobal are connected.

The orange dotes are sampled viewpoints vi, i ∈ Z+. The orange lines are
uncovered surfaces S̄H to be perceived by the viewpoints. The method uses
an iterative random sampling process in determining vi to cover S̄H.

Note that the problem exhibits submodularity [25], i.e. with
more viewpoints selected, the reward of selecting an additional
viewpoint decreases. This is because nearby viewpoints have
overlapping field-of-views, and the same surface can be per-
ceived from multiple viewpoints. Consequently, the reward of
a viewpoint is dependent on the viewpoints selected earlier.
Let vi, i ∈ Z+, be the i-th viewpoint selected. The uncovered
surfaces to be perceived from vi, S̄vi , needs to be adjusted to
S̄vi −

⋃i−1
j=1(S̄vi ∩ S̄vj). Then, Avi is adjusted accordingly.

Algorithm 1 presents the process of viewpoint sampling.
The algorithm first generates a set of viewpoint candidates V
uniformly from a lattice pattern in Htrav (line 1). Second, it
computes the rewards Av for all viewpoint candidates v ∈ V
by estimating their coverages S̄v with the updated environment
representation (line 3). Then, a process is iterated for K times
to determine the viewpoints. At each iteration, the algorithm
randomly samples a subset of viewpoints from V that covers
S̄H (line 6-11). Three viewpoints are pre-selected (line 6),
one as the current viewpoint vcurrent, and the other two as the
viewpoints on the boundary of H, v1

boundary and v2
boundary,

connecting the local path and global path. The process of
determining v1

boundary and v2
boundary is given in Section IV-

C. A priority queue Q′ is used to manage the viewpoint
candidates. The priority of a viewpoint v is set to its reward
Av. Viewpoints are selected from the priority queue with
probabilities proportional to their rewards (line 8). Due to the
submodularity, the rewards of the remaining viewpoints in the
priority queue are reduced accordingly after a viewpoint is
selected, accounting for the overlapping field-of-views (line
10). The viewpoint sampling process finishes when the priority
queue is empty or the marginal reward of adding a new
viewpoint is negligible. The algorithm calls Algorithm 2 to
generate a path through the sampled viewpoints (line 12),
discussed in Section IV-B. Via iterations, paths with lower
costs are found and the path with the lowest cost is returned
as the local path, denoted as Tlocal.

B. Path Generation and Smoothing

Given a set of sampled viewpoints V ′, we want to generate
a path through each of the viewpoints. Ideally, we would

Algorithm 1: Compute Local Path

input : traversable C-space CHtrav, uncovered surfaces
S̄H, current viewpoint vcurrent, boundary
viewpoints v1

boundary and v2
boundary

output: local path Tlocal
1 Generate a set of viewpoint candidates V in CHtrav;
2 Initialize priority queue Q;
3 For every v ∈ V , estimate coverage S̄v, then push v

into Q with the priority set to its reward Av;
4 Tlocal ← ∅, cbest ← +∞;
5 for i := 1 to K do
6 Q′ ← Q, V ′ ← {vcurrent,v

1
boundary,v

2
boundary};

7 while Q′ 6= ∅ and Q′ contains at least one
non-zero priority do

8 Probabilistically pick viewpoint v′ in Q′, then
remove v′ from Q′;

9 V ′ ← V ′ ∪ v′;
10 Update priorities for all viewpoints in Q′;
11 end
12 Compute smooth path T ′smooth and cost c′smooth

using Algorithm 2;
13 if c′smooth < cbest then
14 Tlocal ← T ′smooth, cbest ← c′smooth;
15 end
16 end
17 return Tlocal;

like the path to be kindodynamically feasible, which can be
followed by the vehicle at a high speed. Here, we focus on the
curvature constraint such that the maximum curvature of the
path is determined by the vehicle’s minimum turning radius
when moving at the desired speed. Due to the distribution
of the viewpoints in V ′ and structures in the environment,
a continuous path that meets the curvature constraint can
be impossible. The method computes the path in smooth
segments as shown in Fig. 3. The vehicle stops at the end
of each segment before moving on to the next segment in
a different direction. This requires that the vehicle can turn
in one place. Considering the focus of this paper is not on
path planning using sophisticated motion models, we adopt
the generic differential motion model, and for aerial vehicles,
with independent altitude control. Let us denote the path as
T ′smooth = [v1

1,v
1
2, ...][v

2
1,v

2
2, ...]..., where [·] represents a

segment and vjk is the k-th viewpoint on the j-th segment,
j, k ∈ Z+. Note that the last viewpoint on a segment and
the first viewpoint on the following segment share the same
viewpoint. Let ñ ∈ Z+ be the number of segments, ñ ≥ j.
Define lj as the length of the j-th segment. We discourage
stopping too frequently by applying a penalty p at each stop.
The cost of T ′smooth is defined as

c′smooth =
ñ∑
j=1

lj + p(ñ− 1). (4)

The problem of computing the path can be stated as follows.

Fig. 3. Illustration of smoothed path Tsmooth. The dark-blue curves represent
path segments which satisfy the curvature constraint. The dark-blue dot is
vcurrent. The light-blue dots are v1

boundary and v2
boundary connecting to

Tglobal. The orange dots are sampled viewpoints and the hollow-centered
orange dots are break-points between the path segments. The vehicle makes
a stop at each break-point before moving on to the next path segment.

Problem 2: Given viewpoints V ′, find a path T ∗smooth =
[v1

1,v
1
2, ...][v

2
1,v

2
2, ...]... with the lowest c′smooth such that

T ∗smooth visits each of the viewpoints in V ′ once and each
segment on T ∗smooth satisfies the curvature constraint.

Problem 2 is NP-hard given that it is an extended version
of the Traveling Salesman Problem (TSP) [26]. Instead of
attempting to find an exact solution, we solve the problem
using approximation algorithms in two steps. First, we solve
for an order of the viewpoints with a standard TSP. Second,
we separate the viewpoints into segments following the order.
This is to determine if a viewpoint, except the first and the
last ones, is an inner-point within a segment or a break-
point between two segments. Let n′ ∈ Z+ be the number
of viewpoints in V ′. Define x = [x1, x2, ..., xn′−2] as a
sequence of boolean variables describing the status of the
n′− 2 viewpoints (excluding the first and last) and a function
f(x) = c′smooth. The problem of determining the viewpoint
status can be formulated as,

Problem 3: Given a sequence of bolean variables x and a
function f(x) = c′smooth, find x∗ such that

x∗ = argmin
x

c′smooth. (5)

Problem 3 is a nonlinear integer programming problem and
known to be NP-hard [27]. Especially, finding smooth paths
involves time-consuming trajectory optimization. Instead of
using an existing heuristic method such as [28] with a higher
computational complexity, our method applies a greedy strat-
egy to check each viewpoint only once, maximally reducing
the runtime. Algorithm 2 gives the procedure of computing
T ′smooth from a set of viewpoints V ′. The algorithm finds the
shortest collision-free path between every viewpoint pair in V ′
using the A* algorithm [29] and construct a distance matrix D′

containing the length of the paths (line 1). Next, the algorithm
solves a TSP for a traversal order of the viewpoints (line
2). Upon determining the segments on T ′smooth, the algorithm
initializes all n′ − 2 viewpoints as break-points (line 3) and
smooths the segments between consecutive viewpoints (line
4). Later, the algorithm attempts to reduce the cost c′smooth by
sequentially setting each viewpoint vi as an inner-point and
re-smoothing the segment through vi (lines 5-11). Each path
segment is smoothed with a trajectory optimization method

similar to [30], where the segment is modeled as a set of cubic
splines connected at the viewpoints. Boundary conditions are
applied at the viewpoints. Control points for the splines are
placed on the initial paths given by the A* search and adjusted
by a nonlinear optimization solver [31] to account for collision
clearance and path smoothness. To accelerate processing, the
nonlinear optimization is marginalized where only the splines
between the two adjacent viewpoints of vi are optimized. The
algorithm returns T ′smooth with c′smooth.

C. Global Planning

We divide the space outside H into even cuboid subspaces.
Each subspace stores the covered and uncovered surfaces
developed during the exploration. Note that the data is kept in
the subspaces only for storage, while the data in H is actively
updated as the exploration proceeds. Each subspace holds a
status from “unexplored”, “exploring”, and “explored”. If a
subspace does not contain any covered or uncovered surfaces,
the status is ”unexplored”. If a subspace contains only covered
surfaces, the status is ”explored”. If a subspace contains any
uncovered surfaces, the status is ”exploring”. We only consider
the exploring subspaces in global planning. Denote Gh ⊂ Q,
h ∈ Z+, as an exploring subspace and Ĝ as the set of exploring
subspaces. The global planning problem is to find a global
path Tglobal that goes through the current viewpoint vcurrent

and the centroid of each subpace in Ĝ. During the course of
the exploration, we construct a sparse random roadmap in the
traversable space expanded from the past trajectory. Similar to
local planning, we use A* search on the roadmap for shortest
paths between the subspaces followed by solving a TSP.

Algorithm 3 gives the overall procedure for computing the
exploration path. The algorithm constructs a distance matrix
containing the length of the paths found on the roadmap
(line 1) and solves a TSP (line 2). The two points on Tglobal
intersecting with the boundary of H are extracted as v1

boundary

and v2
boundary (line 3). Then, Algorithm 1 is used to compute

Tlocal (line 4). Finally, Tlocal and Tglobal are concatenated by
substituting the part of Tglobal inside H with Tlocal (line 5).
Fig. 4 shows an example of the exploration where the dark-
blue and light-blue paths represent Tlocal and Tglobal.

When the exploration completes in H (S̄H = ∅), Tlocal re-
duces to the shortest paths connect from vcurrent to v1

boundary

and v2
boundary, which are further connected to the adjacent

exploring subspaces on Tglobal. The vehicle follows the path to
transit to an exploring subspace to resume exploration. In other
words, the algorithm implicitly transitions between exploration
and relocation to another area to explore further. If S̄H = ∅
and Ĝ = ∅, the exploration terminates.

D. Theoretical Analysis

1) Computational Complexity: Let n ∈ Z+ be the number
of viewpoint candidates generated in Algorithm 1. For a fixed
number of iterations, the sampled viewpoints is no more than
n. After selecting each viewpoint, adjusting rewards of the
remaining viewpoints in the priority queue takes O(n) time.
In Algorithm 2, we model the time of finding the shortest

Algorithm 2: Compute Local Path from Viewpoints

input : traversable C-space CHtrav, viewpoints V ′
output: smooth path T ′smooth, cost c′smooth

1 Compute shortest paths between viewpoint pairs in V ′,
then create distance matrix D′;

2 Compute path T ′ by solving TSP using D′;
3 Initialize T ′smooth using T ′, then set viewpoints v2, v3,

..., vn−1 on Tsmooth as break-points;
4 Smooth path segments between consecutive viewpoints

on T ′smooth and compute cost c′smooth;
5 for i := 2 to n′ − 1 do
6 Temporarily set viewpoint vi as an inner-point by

connecting the two segments on both sides of vi;
7 Smooth the path segment through vi and compute

cost c′temp;
8 if c′temp < c′smooth and T ′smooth meets curvature

constraint then
9 Finalize vi on T ′smooth as an inner-point;

10 c′smooth ← c′temp;
11 end
12 end
13 return T ′smooth, c′smooth;

path between two viewpoints and the time of smoothing a
path segment as bounded by two constants (the trajectory
optimization is marginalized where only a bounded number
of control points are optimized). The time complexity of
constructing the distance matrix is O(n2). The TSP is solved
using the Lin–Kernighan heuristic which consumes O(n2.2)
time [26]. The path smoothing processes each viewpoint once
and takes O(n) time. In Algorithm 3, computing the distance
matrix takes O(m2) time and solving the TSP runs in O(m2.2)
time, where m ∈ Z+ is the number of exploring subspaces.
Concatenating Tlocal and Tglobal takes constant time. The time
complexity of our algorithm is stated in Theorem 1.

Theorem 1: Algorithm 3 runs in O(n2.2 +m2.2) time.

2) Probabilistic Completeness: Given a set of viewpoints
V , let AV be the corresponding area of covered surfaces. It
is our observation that AV monotonically increases as more
viewpoints are added to V . Define a set function a(V) = AV .
For any two sets of viewpoints V and V ′, we have

V ′ ⊆ V ⇒ a(V ′) ≤ a(V). (6)

The above relationship helps us draw Lemma 1 as follows.

Lemma 1: The set function a(V) = AV is monotone.

Further, we observe that AV exhibits submodularity, i.e. as
more viewpoints are selected, the marginal reward of adding
a new viewpoint monotonically decreases. As discussed, this
is due to that the same surface is perceived by multiple
viewpoints with overlapping field-of-views. For any two sets
of viewpoints V and V ′, and a single viewpoint v,

V ′ ⊆ V ⇒ a(V ′ ∪ v)− a(V ′) ≥ a(V ∪ v)− a(V). (7)

Algorithm 3: Compute Exploration Path
input : local planning horizon H, traversable C-space

CHtrav, uncovered surfaces S̄H, exploring
subspaces Ĝ, current viewpoint vcurrent

output: exploration path T
1 Compute shortest paths between centroids in Ĝ and

vcurrent, then create distance matrix D;
2 Compute global path Tglobal by solving TSP using D;
3 Extract v1

boundary and v2
boundary as the intersections

between Tglobal and the boundary of H;
4 Compute local path Tlocal using Algorithm 1;
5 Concatenate Tlocal and Tglobal to generate T ;
6 return T ;

The above relationship helps us draw Lemma 2 as follows.

Lemma 2: The set function a(V) = AV is submodular.

Let SH ⊂ Q be the surfaces perceivable from viewpoints in
CHtrav. As our method uses random sampling in selecting the
viewpoints, Theorem 2 states the probabilistic completeness.

Theorem 2: Algorithm 3 is probabilistically complete in
computing path T to cover SH.

Sketch Proof: Let SH,cov ⊂ SH be the covered surfaces and
recall S̄H ⊂ SH as the uncovered surfaces. Since function
a(V) = AV is monotone, as more viewpoints are selected,
SH,cov → SH and correspondingly S̄H → ∅. The probability
that S̄H remains nonempty p(S̄H 6= ∅)→ 0. �

The exploration process covers all surfaces in S at the end
since the termination criterion is S̄H = ∅ and Ĝ = ∅.

3) Approximation Ratio: Let us analyze the approximation
ratio introduced by the hierarchy. To simplify the problem,
we evaluate a path with its length and ignore its kinodynamic
feasibility. Define T ∗ as the shortest possible path to complete
the coverage. T ∗ is computed without using the hierarchy and
considered the theoretically optimal solution. Denote l∗ as the
length of T ∗. Let DH be the longest distance needed to travel
between any two viewpoints in CHtrav, i.e. for all the shortest
paths between any two viewpoints in CHtrav, DH is the length
of the longest path. As defined in (2), D is the distance limit
for covering surfaces. Denote Dwidth, Dlength, and Dheight

as the dimensions of a subspace in Ĝ. We consider a group

Fig. 4. An example exploration process with real data. The figure uses the
same color code as Fig. 2. The white points show lidar scan data, with which
the method extracts uncovered surfaces (red points). The yellow dots are the
viewpoint candidates, from which viewpoints are sampled (orange dots).

of ([D/Dwidth] + 2)× ([D/Dlength] + 2)× ([D/Dheight] + 2)
connected subspaces where the sensor can stay in one subspace
and “see through” to cover surfaces in another subspace. Let
DG be the longest distance needed to travel between any two
viewpoints in such a group of subspaces. The approximation
ratio introduced by the hierarchy is stated in Theorem 3.

Theorem 3: The approximation ratio of the path length by
the hierarchy has σhier ≤ (l∗ + 4DH + 2mDG)/l∗.

Proof: As shown in Fig. 5, let T ∗local be the part of T ∗
inside H and let T ∗global be the part outside H. The length of
T ∗local and T ∗global are denoted as l∗local and l∗global, respectively.
Define T †global as the shortest global path connecting to T ∗local
at B, C and going through the centriod of each subspace in
Ĝ. The length of T †global is denoted as l†global. We have

l†global ≤ l
∗
global + 2mDG . (8)

Eq. (8) can be proved by contradiction. On T ∗global, we add
two pieces of short paths to connect it to the centroid of each
subspace in Ĝ. One short path is for traveling to the centroid
and the other for coming back to T ∗global. Since T ∗ completes
the coverage, T ∗global has to approach each subspace in Ĝ for
the underlying surfaces to be covered. These short paths can be
no longer than DG . This way, we form a new path with T ∗global
and a number of 2m short paths. The new path connects to
B, C and visits the centroid of each subspace in Ĝ. If (8)
does not hold, the new path becomes shorter than T †global and
a contradiction occurs. Let lglobal be the length of the global
path Tglobal found by our method. Note that Theorem 3 states
the approximation ratio introduced by the hierarchy only. Here,
we do not consider the effect of the approximation algorithm
used to solve the TSP. In other words, we assume an exact
solution is obtained from solving the TSP and Tglobal is the
shortest possible path connecting to E, F and going through
the centroid of each subspace in Ĝ. We can show that

lglobal ≤ l†global + 2DH. (9)

Again, we use proof by contradiction. We find two short paths
connecting between B, E and C, F , respectively. Each short
path can be no longer than DH. This way, we form a new path
with T †global and the two short paths. The new path connects to
E, F and visits the centroid of each subspace in Ĝ. If (9) does
not hold, the new path becomes shorter than Tglobal. Therefore,
a contradiction occurs. Further, let llocal be the length of the
local path Tlocal found by our method. We do not consider
the effect of the approximation algorithm solving the TSP

H

Tlocal

TglobalTlocalB

CE

F*
Tglobal

Tglobal

†

*

Short path

Gh

Fig. 5. Illustration of mathematical definitions in the proof of Theorem 3.

or require the path being kinodynamically feasible. Tlocal is
assumed to be the shortest possible path connecting to E, F
and fulfilling a coverage within H. we have

llocal ≤ l∗local + 2DH. (10)

Eq. (10) can be proved by forming a new path with T ∗local and
the two short paths connecting between B, E and C, F . If
(10) does not hold, the new path becomes shorter than Tlocal
and a contradiction occurs. Combining (8)-(10) gives

llocal + lglobal ≤ l∗ + 4DH + 2mDG . (11)

Therefore, the approximation ratio is bounded by

σhier ≤ (l∗ + 4DH + 2mDG)/l∗. (12)

�
In practice, the subspaces in Ĝ are often located at intersec-

tions where the vehicle takes one branch and leaves exploring
subspaces at the entrances of the other branches. These explor-
ing subspaces are converted to “explored” when the vehicle
revisits the intersections and completes the coverage. When the
environment is large-scale, the exploring subspaces are usually
sparsely distributed through the environment. With a large l∗,
m/l∗ is relatively small and σhier is close to one. Finally,
considering that Theorem 3 does not take into account the
segmented path smoothing, we analyze it below. Recall that p
is the penalty for stopping the vehicle at a break-point and n′ is
the number of viewpoints on T ′smooth. We reuse llocal and refer
to the length of the local path where all n′− 2 viewpoints are
set as break-points. This path has the shortest length since no
boundary conditions are applied at the viewpoints as compared
to that any viewpoints are set as inner-points. We have

Theorem 4: The approximation ratio of cost c′smooth by the
path smoothing has σsmooth ≤ (llocal + p(n′ − 2))/llocal.

Proof: Since llocal is the length of the shortest local path,
the cost of the theoretically optimal local path has

c∗smooth ≥ llocal. (13)

In Algorithm 2, the algorithm starts with initializing all n′ −
2 viewpoints as break-points and reduces the cost by setting
each viewpoint as an inner-point and re-smoothing the segment
through the viewpoint. The resulting path has a cost

c′smooth ≤ llocal + p(n′ − 2). (14)

Therefore, the approximation ratio is bounded by

σsmooth ≤ (llocal + p(ñ− 2))/llocal. (15)

�
Theorem 4 implies that our path smoothing is most suitable

when p is relatively small as compared to llocal.

V. EXPERIMENTS

We conduct experiments in both simulation and real-world
experiments. Fig. 6 shows our simulated aerial vehicle model
and ground vehicle platform. The maximum speed is set to
5m/s for the aerial vehicle and 2m/s for the ground vehicle.

Both vehicles are equipped with a Velodyne Puck lidar, used
for exploration and mapping. In addition, the ground vehicle
has a camera at 640 × 360 resolution and a MEMS-based
IMU, coupled with the lidar for state estimation [32]. The
onboard autonomy system incorporates navigation modules
from our benchmark environment, e.g. collision avoidance,
terrain traversability analysis, way-point following, as the mid-
layer, while the exploration algorithm is at the top layer.

The exploration algorithm runs on a 4.1GHz i7 computer
using a single CPU thread. Our method re-plans at 1Hz.
The configuration space in our method is evenly divided into
blocks, where each block represents a subspace. For aerial
vehicle experiments, the block size is set to 16m×16m×10m,
and for ground vehicle experiments, the block size is set to
8m×8m×5m. The local planning horizon consists of 5×5×3
blocks with the vehicle in the center block. Point clouds are
used to model surfaces, which is kept at 1.2m and 0.2m
resolutions for the aerial and ground vehicle experiments. We
compare our method against three state-of-the-art methods,
all using open-source code adapted to the specific evaluation
environments.
• NBVP [21]: A method spans an RRT in the free space

and finds the most informative branch in the RRT as the
path to the next viewpoint.

• GBP [23]: An extension of NBVP, where the method con-
structs an RRG in the global space and searches the RRG
for routes to relocate the vehicle. The method explicitly
switches between exploration mode and relocation mode.

• MBP [24]: A variant of GBP, which constructs the local
RRT using motion primitives. The resulting paths are
smoother but only span in constrained directions.

Test 1 uses the aerial vehicle to explore a university campus
in simulation. Fig. 7(a) shows the resulting point cloud map
and trajectory of our method in a representative run, with
the trajectories of the other methods shown on the left.
Each method is run 10 times starting at the same position
indicated by blue dots. Our method is able to cover the entire
environment using 1318m of travel on average and 366s in the
longest run. The time limit for the other methods is set to four
times of our longest run. Within the time limit, none of the
three methods is able to completely explore the environment.
Fig. 7(b) gives results on the explored volume over time. The
dotted lines represent the upper-bound and lower-bound, and
the solid lines represent the mean over the 10 runs. Table I
compares the exploration efficiency for all methods. Here, the
efficiency ε is defined as the average explored volume per

(a) (b)
Fig. 6. (a) Simulated aerial and (b) Ground experiment platforms.

(a)

(b)

(c)
Fig. 7. Results of Test 1 with the aerial vehicle in simulation. (a) shows
the resulting map and trajectory of our method from a representative run.
Trajectories from NBVP, GBP, and MBP are shown on the left. The blue dots
indicate the start point. (b-c) are exploration metrics for all methods.

second over the entire runs, and the relative efficiency rε is
defined as the ratio compared to our method. Our method
produces an efficiency more than 7 times of the other methods.
Fig. 7(c) shows the algorithm runtime. The average runtime
for NBVP is 4.6s, for GBP is 7.4s, for MBP is 6.3s, and for
ours is 0.21s, where ours is a magnitude lower.

Test 2 uses the ground vehicle to explore a four-storage
garage and a connected patio in real-world experiments. The
start point is set at the entrance of the garage. During experi-
ments, a run is terminated if the exploration algorithm reports
completion, the vehicle almost stops moving (less than 10m
of movement within 300s), or the time limit is met (set as
twice of our method). Only our method is able to explore
the whole environment and report completion after 1839m
of travel in 1907s. All other methods terminate inside the
garage and miss the patio connected to the garage from the
top floor. In particular, NBVP reaches the time limit, and GBP
and MBP are terminated due to they almost stop moving.
Fig. 8(a) shows the resulting point cloud map and trajectory
from our method, with trajectories from the other methods
on the bottom. Fig. 8(b) compares the explored volume. Note
that compared to Test 1, the topology in Test 2 is simpler,
with fewer intersections and branches. Especially, all methods
exhibit similar performance during the first half of the run,
where the vehicle follows the main spiral driveway in the

(a)

(b)

(c)
Fig. 8. Results of Test 2 with the ground vehicle in physical experiments.
The figure shares the same layout as Fig. 7.

garage from the top floor to the bottom floor. As indicated in
Table I, our method is still 80% more efficient than the other
methods for the overall run. Fig. 8(c) presents the algorithm
runtime. The average runtime for NBVP is 0.88s, for GBP is
2.64s, for MBP is 10.13s, and for our method is 0.42s. Our
runtime is 50% less than the other methods.

Table II presents the runtime breakdown for our method.
One can see that majority of the processing is spent on local
planning. Despite different scales and complexity levels of
the environments in the two tests, the overall runtime of our
method has the same scale. Further, we conduct tests with
different H to inspect the corresponding algorithm runtime.
Table III shows the result. As expected, the computation in
local planning increases dramatically as H increases from the
default value on the left. The largest H on the right covers
the entire environment, i.e. the runtime for local planning is

TABLE I
COMPARISON OF EXPLORATION EFFICIENCY

NBVP GBP MBP Ours
Test ε rε ε rε ε rε ε rε

Test 1 15.7 0.079 23.9 0.12 26.9 0.13 199.7 1.0
Test 2 3.0 0.24 6.8 0.55 5.3 0.43 12.3 1.0

TABLE II
RUNTIME BREAKDOWN

Local Planning
Test Update Sample Find/Opt. Global Overall

Representation Viewpoints Path Planning

Test 1 129.7ms 2.1m 45.8ms 28.6ms 206.2ms
Test 2 382.9ms 7.3ms 5.4ms 24.8ms 420.4ms

TABLE III
RUNTIME WITH DIFFERENT H FOR TEST 1

H (m) 80×80×30 160×160×60 320×320×120

Average Local Global Local Global Local Global
Runtime (ms) 177.6 28.6 2197.6 27.9 5340.7 23.25

equivalent to our method reconfigured to not use the hierar-
chy. The result consolidates the strength of our hierarchical
framework in producing high-efficiency processing.

Finally, our method is used by the CMU-OSU team in
attending the DARPA Subterranean Challenge. Fig. 9 shows
a representative result from a competition that takes place in
Satsop Nuclear Plant, WA. Our vehicle fully autonomously
explores the entire floor traveling over 886m in 1458s. Due to
space issue, we eliminate the details of this result.

VI. CONCLUSION

We propose a method for highly efficient exploration of
large and complex environments. Our method uses a hierarchi-
cal framework to plan detailed paths within the local planning
horizon and coarse paths at the global scale. The method opti-
mizes the full exploration path rather than greedily maximizes
the marginal rewards. We provide theoretical analysis on the
approximation ratio introduced by the hierarchy. Our method
is evaluated against state-of-the-art methods in simulation
and physical environments. Experiment results show that our
method is 80% more efficient in covering spaces and consumes
less than 50% of computation compared to the state-of-the-art.

Fig. 9. Result from DARPA Subterranean Challenge in Satsop Nuclear Plant,
WA. The photo shows the exterior of the building where the event takes place.
Our vehicle travels over 886m in 1458s to explore the entire floor.

REFERENCES

[1] F. Bourgault, A. A. Makarenko, S. B. Williams, B. Grocholsky, and
H. F. Durrant-Whyte, “Information based adaptive robotic exploration,”
in IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Lausanne, Switzerland, Oct. 2002.

[2] C. Stachniss, G. Grisetti, and W. Burgard, “Information gain-based
exploration using rao-blackwellized particle filters.” in Robotics: Science
and Systems, Cambridge, MA, June 2005.

[3] W. Tabib, M. Corah, N. Michael, and R. Whittaker, “Computation-
ally efficient information-theoretic exploration of pits and caves,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Daejeon, Korea, Oct. 2016.

[4] S. Bai, J. Wang, F. Chen, and B. Englot, “Information-theoretic explo-
ration with bayesian optimization,” in IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), Daejeon, Korea, Oct.
2016.

[5] W. Burgard, M. Moors, C. Stachniss, and F. E. Schneider, “Coordinated
multi-robot exploration,” IEEE Transactions on robotics, vol. 21, no. 3,
pp. 376–386, 2005.

[6] C. Nieto-Granda, J. G. Rogers III, and H. I. Christensen, “Coordination
strategies for multi-robot exploration and mapping,” The International
Journal of Robotics Research, vol. 33, no. 4, pp. 519–533, 2014.

[7] M. Corah and N. Michael, “Efficient online multi-robot exploration
via distributed sequential greedy assignment.” in Robotics: Science and
Systems, Cambridge, MA, July 2017.

[8] B. Yamauchi, “A frontier-based approach for autonomous exploration,”
in IEEE International Symposium on Computational Intelligence in
Robotics and Automation, 1997, pp. 146–151.

[9] D. Holz, N. Basilico, F. Amigoni, and S. Behnke, “Evaluating the
efficiency of frontier-based exploration strategies,” in 41st International
Symposium on Robotics (ISR) and 6th German Conference on Robotics
(ROBOTIK), Munich, Germany, 2010.

[10] M. Kulich, J. Faigl, and L. Přeučil, “On distance utility in the exploration
task,” in IEEE International Conference on Robotics and Automation
(ICRA). Shanghai, China: IEEE, May 2011.

[11] C. Dornhege and A. Kleiner, “A frontier-void-based approach for au-
tonomous exploration in 3D,” Advanced Robotics, vol. 27, no. 6, pp.
459–468, 2013.

[12] L. Heng, A. Gotovos, A. Krause, and M. Pollefeys, “Efficient visual
exploration and coverage with a micro aerial vehicle in unknown
environments,” in IEEE International Conference on Robotics and
Automation (ICRA), Seattle, WA, May 2015.

[13] T. Cieslewski, E. Kaufmann, and D. Scaramuzza, “Rapid exploration
with multi-rotors: A frontier selection method for high speed flight,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Vancouver, Canda, Sept. 2017.

[14] M. Kulich, J. Kubalı́k, and L. Přeučil, “An integrated approach to goal
selection in mobile robot exploration,” Sensors, vol. 19, no. 6, p. 1400,
2019.

[15] J. Faigl and M. Kulich, “On determination of goal candidates in frontier-
based multi-robot exploration,” in European Conference on Mobile
Robots, Barcelona, Spain, Sept. 2013.

[16] H. Choset, S. Walker, K. Eiamsa-Ard, and J. Burdick, “Sensor-based
exploration: Incremental construction of the hierarchical generalized
voronoi graph,” The International Journal of Robotics Research, vol. 19,
no. 2, pp. 126–148, 2000.

[17] E. U. Acar and H. Choset, “Sensor-based coverage of unknown en-
vironments: Incremental construction of morse decompositions,” The
International Journal of Robotics Research, vol. 21, no. 4, pp. 345–
366, 2002.

[18] S. Kim, S. Bhattacharya, R. Ghrist, and V. Kumar, “Topological
exploration of unknown and partially known environments,” in 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems.
Tokyo, Japan: IEEE, November 2013, pp. 3851–3858.

[19] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” 1998.

[20] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[21] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart,
“Receding horizon” next-best-view” planner for 3D exploration,” in
IEEE international conference on robotics and automation (ICRA),
Stockholm, Sweden, May 2016.

[22] C. Witting, M. Fehr, R. Bähnemann, H. Oleynikova, and R. Siegwart,
“History-aware autonomous exploration in confined environments using
mavs,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Madrid, Spain, Oct. 2018.

[23] T. Dang, M. Tranzatto, S. Khattak, F. Mascarich, K. Alexis, and
M. Hutter, “Graph-based subterranean exploration path planning using
aerial and legged robots,” Journal of Field Robotics, vol. 37, no. 8, pp.
1363–1388, 2020.

[24] M. Dharmadhikari, T. Dang, L. Solanka, J. Loje, H. Nguyen,
N. Khedekar, and K. Alexis, “Motion primitives-based path planning
for fast and agile exploration using aerial robots,” in IEEE International
Conference on Robotics and Automation (ICRA), Paris, France, May
2020.

[25] M. Roberts, D. Dey, A. Truong, S. Sinha, S. Shah, A. Kapoor, P. Han-
rahan, and N. Joshi, “Submodular trajectory optimization for aerial 3D
scanning,” in Proceedings of the IEEE International Conference on
Computer Vision, Venice, Italy, Oct. 2017.

[26] C. H. Papadimitriou, “The complexity of the lin–kernighan heuristic for
the traveling salesman problem,” SIAM Journal on Computing, vol. 21,
no. 3, pp. 450–465, 1992.

[27] D. Li and X. Sun, Nonlinear integer programming. Springer Science
& Business Media, 2006.

[28] D. Bergman, A. A. Cire, W.-J. van Hoeve, and T. Yunes, “BDD-based
heuristics for binary optimization,” Journal of Heuristics, vol. 20, no. 2,
pp. 211–234, 2014.

[29] S. Russell and P. Norvig, “Artificial intelligence: a modern approach,”
2002.

[30] B. Zhou, F. Gao, L. Wang, C. Liu, and S. Shen, “Robust and effi-
cient quadrotor trajectory generation for fast autonomous flight,” IEEE
Robotics and Automation Letters, vol. 4, no. 4, pp. 3529–3536, 2019.

[31] S. G. Johnson, “The nlopt nonlinear-optimization package,” http://github.
com/stevengj/nlopt, 2014.

[32] J. Zhang and S. Singh, “Laser-visual-inertial odometry and mapping
with high robustness and low drift,” Journal of Field Robotics, vol. 35,
no. 8, pp. 1242–1264, 2018.

http://github.com/stevengj/nlopt
http://github.com/stevengj/nlopt

	Introduction
	Related Work
	Problem Definition
	Methodology
	Viewpoint Sampling
	Path Generation and Smoothing
	Global Planning
	Theoretical Analysis
	Computational Complexity
	Probabilistic Completeness
	Approximation Ratio

	Experiments
	Conclusion
	References

