
DSVP: Dual-Stage Viewpoint Planner for Rapid Exploration by
Dynamic Expansion

Hongbiao Zhu1,2, Chao Cao1, Yukun Xia1, Sebastian Scherer1, Ji Zhang1, and Weidong Wang2

Abstract— We present a method for efficiently exploring
highly convoluted environments. The method incorporates two
planning stages - an exploration stage for extending the
boundary of the map, and a relocation stage for explicitly
transiting the robot to different sub-areas in the environment.
The exploration stage develops a local Rapidly-exploring Ran-
dom Tree (RRT) in the free space of the environment, and
the relocation stage maintains a global graph through the
mapped environment, both are dynamically expanded over
replanning steps. The method is compared to existing state-
of-the-art methods in various challenging simulation and real
environments. Experiment comparisons show that our method
is twice as efficient in exploring spaces using less processing
than the existing methods. Further, we release a benchmark
environment to evaluate exploration algorithms as well as
facilitate development of autonomous navigation systems. The
benchmark environment and our method are open-sourced.

I. INTRODUCTION

Autonomous exploration tackles the problem of deploying
robots in environments unknown a priori for information
gathering. This problem is essential for fulfilling tasks such
as search, rescue, and survey. Yet, it remains challenging due
to the complex structural setting and geometric layout in the
environment. Very often, the environment to be explored is
convoluted, consisting of branches connected at intersections.
The robot needs to transit between sub-areas in order to
efficiently explore the environment.

The paper puts forward a method capable of efficiently
exploring environments at a high-degree of convolution. The
method incorporates two planning stages - an exploration
stage in charge of extending the boundary of the map, and a
relocation stage for explicitly transiting the robot to different
sub-areas in the environment (see Fig. 1). The exploration
stage uses a local Rapidly-exploring Random Tree (RRT) [1]
to span the space in the surroundings of the robot, searching
for the branch on the RRT leading to the highest collective
reward for the robot to execute. The relocation stage involves
a global graph built along the course of the exploration,
keeping a record of fully and partially covered areas. During
deployment, the robot transitions back-and-forth between the
two stages to explore all areas in the environment.

Our method draws inspiration from a well-known explo-
ration algorithm framework [2]. Such a framework expands
a RRT in the free space and considers nodes on the RRT as
viewpoints. Sensor coverage is estimated from each view-
point. Computing the reward of each branch accounts for

1H. Zhu, C. Cao, Y. Xia, S. Scherer, and J. Zhang are with the Robotics
Institute at Carnegie Mellon University, Pittsburgh PA.

2H. Zhu and W. Wang are with the Robotics Institute at Harbin Institute
of Technology, Harbin China.

Fig. 1: Illustration of our method. The grey area stands for the
unknown space. The black solid lines are the obstacles , i.e. the
occupied space. The blue solid rectangle is the robot. The purple
dots in the unknown space are the global frontiers FG, while
the yellow dots are the local frontiers FL. The blue dots, local
viewpoints Vi, and blue arrows form the local tree. The red dots
and red lines make up the global graph. Those red dots are the
global vertices vi, which are viewpoints as well. The yellow and
purple semi-transparent lines are exploration and relocation paths.

the coverage of all underlying viewpoints on the branch. Our
method extends the framework in mainly two aspects.
• Dynamic Expansion: Both stages dynamically expand

the RRT and graph, respectively, over replanning steps.
Nodes on the RRT that are occluded or out of the
planning horizon are trimmed off. Then, new nodes are
sampled in the free space. This way, useful viewpoints
are kept, while newly sampled viewpoints further en-
force the solution. Further, much computation is saved
not re-building the entire RRT at each replanning step.

• Hybrid Frontiers: The method uses a combination of
frontiers extracted in the sensor range associated with
the RRT nodes as well as frontiers extracted in the sur-
roundings of the robot. Due to the randomness of RRT,
using any single type of frontiers or none often results
in certain areas in the environment being overlooked.
Our method uses both types of frontiers to guide the
expansion of the RRT, ensuring complete coverage.

In addition to the above theoretical contributions, we
release a benchmark environment1 containing representative
simulation environments, fundamental navigation modules,
e.g. collision avoidance, terrain traversability analysis, way-
point following, and visualization tools for benchmarking
exploration algorithms. The environment is also meant to
facilitate development of autonomous navigation systems.

Our exploration method is evaluated in the benchmark
environment and physical experiment where the robot ex-
plores an area containing multiple buildings on the university
campus. In all evaluated environments, our method signifi-

1Benchmark environment: https://www.cmu-exploration.com

https://www.cmu-exploration.com


cantly outperforms the state-of-the-art methods in terms of
exploration efficiency. Our method is open-sourced2 and our
experiment results are available in a public video3.

II. RELEATED WORK

In recent years, numerous techniques have been devel-
oped to solve the autonomous exploration problem, such as
frontiers-based algorithm [3]–[9], next-best-view algorithms
[2], [10]–[13] and algorithms based on machine learning
[14]–[17]. The previous two types of algorithm are com-
monly used in most exploration methods while machine
learning based approaches have emerged recently.

Frontier-based approach is among the most effective ways
in exploration. In frontier-based algorithms, one important
issue to solve is the sequence to visit frontiers. Method in
[3] selects the closest frontier as the goal, often causing
repeated visits during the exploration. Approach [4] makes
improvements by using a repetitive rechecking method and
segmenting the environment into small pieces. Since the
segmentation is adapted to structured indoor environments,
the method only works well indoors. Traveling Salesman
Problem (TSP) is later employed in [5], [18] to get the
sequence of visiting all frontiers. However, as more frontiers
are generated along the exploration, the TSP becomes larger
and heavier to solve. In [19], instead of taking frontiers as
goals, viewpoints that can see all frontiers are generated and
a generalized TSP is used to obtain the best sequence to visit
the viewpoints.

In contrast, next-best-view approaches do not use frontiers
as the direct guidance or goals, but use randomly sam-
pled viewpoints in the free space. Next Best View Planner
(NBVP) [2] is considered the state-of-art in this category.
It generates viewpoints with RRTs and then computes the
volumetric gain of each viewpoint. Yet, its major limitation
is that it only focuses on the process of extending the map
boundary. The method is limited in transiting to different
areas in the environment for further exploration, after one
area is fully explored. A method named Graph-Based ex-
ploration Planner (GBP) [13] develops a global Rapidly-
exploring Random Graph (RRG) [20] to re-position the
robot to unexplored areas. Another method named Motion-
primitive-Based exploration Planner (MBP) [12] develops the
local RRT using motion primitives. The resulting paths are
smoother and span in constrained directions. However, all the
three methods expand a new RRT or RRG at each replanning
step in the exploration mode. A large number of useful
nodes are removed and re-sampled, wasting computation.
Further, since RRT and RRG expand randomly in the free
space, areas that are not spanned by the RRT or RRG are
ignored. Consequently, the methods are prone to overlook
areas, especially for areas with small openings, and produce
an incomplete coverage.

Our method extends the state-of-the-art methods by dy-
namically maintaining and expanding the RRT during the

2DSVP code: https://github.com/HongbiaoZ/dsv_planner
3Representative result: https://youtu.be/1yLLIZIIsDk

exploration and guiding the expansion of the RRT with
hybrid frontiers. We compare our method with NBVP [2],
MBP [12], and GPB [13] in various simulation and real-
world environments. We conclude that our method produces
more complete coverage and the exploration efficiency is
more than twice of the state-of-the-art while the processing
load is less.

III. METHODOLOGY

Define S ⊂ R3 as the space to be explored. Let Sfree ⊂ S
be the known free space, Socc ⊂ S be the known occupied
space and Sunk ⊂ S be the current unknown space. As
shown in Fig. 1, at the exploration stage of our method,
a dynamically-expanded RRT is used to create the local
random tree, the nodes of which are viewpoints. The best
branch is then obtained and taken as the trajectory by
computing the reward of each branch in the tree. In this
stage, frontiers that are within the field of view of the robot
as well as the RRT nodes are extracted as local frontiers. At
the relocation stage, global frontiers, which are made up of
the local frontiers that are not cleared until the latest update,
assist the planner to choose the best one from all remaining
viewpoints in the global graph.

A. Exploration Stage

Our method uses dynamically-expanded RRT at the explo-
ration stage to generate viewpoints around the robot in each
iteration. Fig. 2 shows the process of dynamic expansion.
As shown in Fig. 2a, define H ⊂ R3, the green square, as
the planning horizon and set the current position PR, point
A, as the root of the tree. Then, a RRT is constructed at
the first iteration, before which there is no previous RRT.
All nodes on the tree are viewpoints, defined as V . we
use octomap [21] as the underlying occupancy map, with
which the collision check of viewpoints and edges between
viewpoints are performed to ensure they are in the free space.
When the robot moves to point B in Fig. 2b after an iteration,
the previous tree is reconstructed in two steps. First, the tree
is pruned by deleting all nodes that are occluded or out of the
current planning horizon H, such as the light blue nodes in
Fig. 2b. Next, we update the tree structure so that PR, point
B, becomes the root of the new tree. New viewpoints, orange
nodes in Fig. 2b, are randomly sampled and added to the
new tree. With the dynamic expansion, only a small fraction
of nodes are re-generated in each iteration, which results in
less computation compared to completely constructing a new
tree. In addition, we prune nodes that are in collision due to
dynamic obstacles and thin structures previously overlooked
by the sensor.

We use local frontiers FL to bias the tree construction
during the exploration stage so that the tree expands towards
unknown areas along the previous direction of exploration.
Local frontiers in this paper must meet the following condi-
tions in Eq. (1)-(3).

FL ∈ B (1)

https://github.com/HongbiaoZ/dsv_planner
https://youtu.be/1yLLIZIIsDk


∃V s.t. FL is in FOV (V ) or (2)

FL is in FOV (PR) (3)

In Eq.(1), B represents a boundary within which the local
frontiers are extracted. This region is slightly bigger than the
planning horizon. Condition (2) and (3) require the frontier
to be in the field of view (FOV) of at least one viewpoint
or in the FOV of the robot. Note that line-of-sight check is
performed to ensure that the frontier can be observed by the
viewpoint or the robot without occlusion. Under these two
conditions, the hybrid frontiers that are around the viewpoints
and around the robots can be extracted. Note that when
extracting frontiers, the sensor range of the viewpoints is
set to smaller than that of the robot. This is because that
viewpoints are expanded closer to frontiers, where a shorter
range is sufficient for observing the fronteirs and can reduce
overall computation. Condition (2) and (3) also serve as
the noise-filtering process, where in complex environments
occulusion and sensor noise can result in noisy frontiers that
are not worth exploring. Given that frontiers are only used
as guidance, they can be grouped into sparse clusters.

Among all FL, we select FLS to be the closest ones to
the current exploration direction. The selected frontiers bias
the tree expansion as shown in Fig. 2b, where FLS1, FLS2,
and FLS3 are the frontiers selected. The biased sampling
scheme is described as follows. We first uniformly sample
a number between 0 and 1. If the number is larger than
θ, a threshold for regulating the sampling area, then we
randomly sample points in the selected frontiers’ sensor
range. Otherwise, we sample points in other regions. The
probability of sampling points falling around the selected
frontiers is much higher than in other regions. Thus, the
tree tends to expand towards the frontier, resulting in more
viewpoints close to the current exploration direction. With

(a) (b)

Fig. 2: Exploration stage. (a) shows the tree and local frontiers
obtained in the previous iteration. Grey area is unknown space and
black area is occupied space. Yellow solid circles are local frontiers
FL. The green square denotes the planning horizon H. (b) is the
new tree generated in the current iteration. The light blue dots are
pruned viewpoints that are out of the current planning horizon.
Blue dots stand for useful viewpoints from the old tree and orange
dots are new sampled viewpoints. FLS1, FLS1 and FLS1 are three
selected local frontiers used to guide the extension of local tree.
Yellow hollow circles are the sensor ranges of the selected frontiers.

Algorithm 1: Exploration

1 Set Slb, root position Prob and Flocal
2 Update FLS
3 V ← DynamicRRT()
4 BestGain← 0
5 for i from 1 to N do
6 Compute Gain(Bi)
7 if Gain(Bi) > BestGain then
8 BestGain← Gain(Bi)
9 BestBranch← Bi

10 end
11 end
12 Previous Tree ← Current Tree

the guidance of local frontiers, the viewpoints distributed
more densely near unknown areas in H. This can help make
the sampling process more effective.

Define V = {V1, V2, ..., Vn} as the set of viewpoints, where
the subscript indicates the order in which the corresponding
viewpoint is generated. Eqs. (4) and 5 show the utility
function used to compute the gain of each branch in the
tree. It is similar to the method used in [13].

Gain(Bi) =
∑
V ji ∈Bi

Gain(V ji ) · e
−DTW (Bi)·λ1 (4)

Gain(V ) = V oxelGain(V ) · e−dist(V )·λ2 (5)

where Bi represents the branch from root viewpoint
V0 to Vi and V ji represents the jth viewpoint on Bi.
V oxelGain(V ) is the number of unknown voxels in the
FOV of viewpoint V . dist(V ) denotes the distance of the
tree branch from V0 to V , and λ1 is a parameter that
penalizes traveling distance. Function DTW (Bi) is based
on Dynamic Time Warping method [22] that computes the
similarity between branch Bi and the branch selected in the
last iteration, which also reflects the exploring direction. The
more similar these two branches are, the lower the value of
DTW (Bi). λ2 is a parameter that penalizes the difference
between Bi and the last trajectory. The branch with the
greatest gain will be picked as the next trajectory.

Algorithm 1 and 2 illustrate the process of the exploration
stage. The local frontiers are updated at a constant frequency.
FLS are selected from all local frontiers at the beginning
of each iteration. Then, with the guidance of FLS , new
viewpoints are sampled after pruning and reconstruction of
the previous tree. Eventually, Eq. (4) is used to compute the
gain of each branch and determine the final trajectory.

B. Relocation Stage

When there is no local frontiers within the planning
horizon, the planner switches from the exploration stage to
the relocation stage. The relocation stage involves the global
graph and global frontiers. The main utility of the global
graph G is to record all the valuable viewpoints sampled at
the exploration stage and search for the shortest path between



Algorithm 2: Dynamic Expansion

1 Set Slb, root position Prob and FS
2 Prune(Previous Tree)
3 Rebuild(Previous Tree)
4 while Nnew < N do
5 Sample u ∼ U [0, 1]
6 if u <= θ then
7 Random Sample viewpoints in Slb
8 else
9 Random Sample viewpoints around FS

10 end
11 end

two viewpoints. In each iteration of the exploration stage,
viewpoints in branches with positive Gain() are added as
vertices to the global graph. When adding a new vertex vnew
to G, an edge between vnew and the closest existing vertex is
added as well. In addition, if an existing vertex v meets the
following two conditions, an edge between it and the new
vertex will also be added.{

DE(v, vnew) < δ
DG(v, vnew)/DE(v, vnew) > γ

(6)

where DE is the euclidean distance and DG is the closest
distance along the graph. δ and γ are two parameters to
restrict the euclidean distance and the ratio between the two
distances. Eq. (6) ensures that the graph is not too dense
while providing short paths between vertices. Further, to
ensure that all edges in the graph are collision-free, we trim
off edges that are in collision due to dynamic or previously
overlooked obstacles. The graph is then adjusted after the
pruning to ensure connectivity. Note that vertices in the graph
only includes position information, without considering the
V oxelGain.

Global frontiers FG are composed of local frontiers that
are left out previously. Note that they can be observed by
at least one viewpoint in the global graph. Every time the
local frontiers are updated, they are added to FG. Meanwhile,
all frontiers in FG are rechecked and removed if they are
cleared.

The detailed process of the relocation stage is presented in
Algorithm 3. Define Fi as the ith frontier in FG, FGS as the
selected global frontier to be observed and vS as the vertex
that is selected as the goal. Taking Fig. 3 as an example. First,
the planner searches for a vertex that is able to observe any
global frontier in G determined by ray tracing. For a vertex
vi in G, the larger the value of i is, the later it appears and
the closer it is to the robot position. The same rule also
applies to the global frontiers. Thus, furthest global frontiers
are selected first, making the final selection close to the
current position. As in Fig. 3, point B is the vertex that can
observe the selected frontier FGS . This process corresponds
to lines 4 to 14 in Algorithm 3. Then the method searches
the graph from the end again to find the closest vertex that
can observe FGS , such as point A, which corresponds to

Algorithm 3: Relocation

1 Update Fglobal and G
2 Flag ← False and Dist← 0
3 for i from N to 1 do
4 for j from M to 1 do
5 if Fi in FOV(vi) then
6 vS ← vi, FGS ← Fi
7 Dist← Dist(Fi, vi), Flag ← True
8 break;
9 end

10 if Flag is True then
11 break;
12 end
13 end
14 end
15 if Flag is True then
16 for i from N to 1 do
17 if FGS in FOV(vi) then
18 if Dist(FGS , vi) < Dist then
19 vS ← vi
20 end
21 end
22 end
23 else
24 Exploration Complete.
25 end

lines 16 to 23. After this process, the final target viewpoint
vS is obtained. The robot then moves to vS along the graph
and enters exploration mode again. If no vertex is found in
the first step, the exploration is completed, line 24. With
global frontiers, this method guarantees all traversable areas
are covered. In addition, there is no need to compute and
update V oxelGain of each viewpoint in the global graph,
which saves much computation.

IV. BENCHMARK ENVIRONMENT

The environment serves as a platform for benchmarking
exploration algorithms. It is also meant for leveraging sys-
tem development and robot deployment for ground-based

Fig. 3: Relocation stage. The purple dots are global frontiers and the
purple dot with blue edge is the selected global frontier FGS .The
red dots and red lines have the same definitions as Fig. 1. The green
viewpoint B is the first one that could observe FGS if searching
from the end of the global graph. The green viewpoint A is the best
one to observe FGS .The yellow circles denote the sensor ranges of
viewpoint A and B.



(a) (b)

Fig. 4: (a) Collision avoidance. The yellow dots indicate collision-
free paths. (b) Terrain map (40m x 40m). The green points are
traversable and the red points are non-traversable.

autonomous navigation. The environment contains a variety
of simulation environments, fundamental navigation modules
such as collision avoidance, terrain traversability analysis,
waypoint following, and a set of visualization tools. Table I
lists the characteristics of the simulation environments.
• Campus (340m × 340m): A large-scale environment

as part of the Carnegie Mellon University campus,
containing undulating terrains and convoluted layout.

• Indoor (130m × 100m): Consists of long and narrow
corridors connected with lobby areas. Obstacles such as
tables and columns are present.

• Garage (140m × 130m, 5 floors): An environment with
multiple floors and sloped terrains to test autonomous
navigation in a 3D environment.

• Tunnel (330m × 250m): A large-scale environment
containing tunnels that form a network, provided by
Tung Dang at University of Nevada, Reno.

• Forest (150m × 150m): Containing mostly trees and a
couple of houses in a cluttered setting.

The collision avoidance module [23] makes sure the
vehicle navigates safely. It computes collision-free paths in
the vicinity of the vehicle and guides the vehicle to navigate
between obstacles. The collision avoidance module utilizes
pre-generated motion primitives. When the vehicle navigates,
it in real-time determines the motion primitives occluded
by obstacles. The resulting collision-free paths, as shown in
Fig. 4a, are for vehicle navigation. The collision avoidance
module takes as input the terrain maps from the terrain
analysis module to determine terrain traversability.

The terrain analysis module analyzes the local smoothness
of the terrain and associates a cost to each point on the
terrain map. This uses a voxel representation and checks the
distribution of the points in adjacent voxels. Advanced func-
tionalities such as handling negative obstacles are optional.
Fig. 4b gives an example terrain map covering a 40m x 40m
area with the vehicle in the center. The green points are
traversable and the red points are non-traversable.

TABLE I: Simulation environment characteristics
Large Convoluted Multi Undulating Cluttered Thin
Scale Storage Terrain Obstacles Structure

Campus X X X
Indoor X X X
Garage X X
Tunnel X X
Forest X

Fig. 5: System integration diagram

The visualization tools display the overall map and ex-
plored areas during the course of the exploration. Exploration
metrics such as explored volume, traveling distance, and
algorithm runtime are plotted and logged to inspect the
performance. The environment is constructed with facili-
tating development of autonomous navigation systems in
mind. When integrated on a real robot, it takes the role as
the middle layer in the autonomous navigation systems, as
illustrated in Fig. 5. Further, the environment supports using
a joystick controller to interfere with the navigation, easing
the process of system debugging. Detailed information is
available on the project website (link provided on first page).

V. EXPERIMENTS

A. Evaluation in Benchmark Environment

We conduct simulation experiments with the benchmark
environment in three environments, i.e. indoor, campus and
garage. The vehicle navigates at 2 m/s. Our method sets the
exploration planning horizon H to a 30m×30m area and the
frontier boundary B to a 40m×40m area. The resolution of
the octomap is set to 0.35m. We compare with three state-of-
art methods in the experiments, all using open-source code
adapted to the evaluation environments.
• NBVP [2]: A method using RRT to span the space. It

finds the most informative branch in the RRT as the
path to the next viewpoint.

• GBP [13]: An extension of NBVP where the method
builds a global RRG through the traversable space and
searches the RRG for routes to relocate the vehicle.

• MBP [12]: An extension of GBP where the method
builds the local RRT using motion primitives. The
resulting paths are smoother and span in constrained
directions.

Each method is run 10 times. A run is ended if the explo-
ration algorithm reports completion, the vehicle almost stops
moving (less than 10m of movement within 300s), or a time
limit is reached. Here, the time limit is set to twice of the
longest run of our method. Among the evaluated methods,
only our method reports completion. In the following results,
the trajectories are the best of the 10 runs and the evaluation
metrics (explored volume, traveling distance, and algorithm
runtime) are the average of the 10 runs. The algorithm
runtime is evaluated based on a 4.1 GHz i7 CPU. All
algorithms use a single CPU thread.

Fig. 6 shows the results for the indoor environment. in
which Fig. 6a includes the best trajectory of each method.



(a)

(b)

(c)

(d)

Fig. 6: Simulation results of the indoor environment.(a) shows the
resulting map of our method and trajectories of all methods. The
blue dot indicates the start point of all trajectories. (b) is the average
explored volumes vs. time.(c) is the average traveling distances vs.
time. (d) is the average runtime vs. time.

As can be seen, GBP and MBP are both capable of exploring
the entire area while NBVP can only cover a limited area
because it has limitations in relocating the vehicle. Our
method covers the complete space. Fig. 6b and 6c compare
the average explored volume and traveling distance of all
methods. Our method completes the exploration after travel-
ing 1384m over 912s. It can be seen that GBP can not cover
the whole space every time, causing the average volume
much less than our methods. GBP and MBP are often trapped
in dead end areas. Our method can cover the space fully in
all evaluated runs.

Fig. 7 and 8 demonstrate the results for campus and
garage environments. From the best trajectories of NBVP,
GBP and MBP in Fig. 7a and Fig. 8a, we can see that

TABLE II: Comparison of exploration efficiency
NBVP MBP GBP DSVP
ε rε ε rε ε rε ε rε

Indoor 1.2 0.18 3.3 0.49 3.6 0.53 6.8 1.0
Campus 11.1 0.39 11.7 0.41 12.1 0.42 28.8 1.0
Garage 0.9 0.06 2.8 0.2 6.0 0.43 14.0 1.0

(a)

(b)

(c)

(d)

Fig. 7: Simulation results of the campus environment. The figure
shares the same layout as Fig.6.

these methods are unable to cover the entire environment.
For GBP and MBP, we observe that they have difficulty in
triggering the relocation mode when the environment is open.
After traveling 2828m in 1872s in the campus environment
and 5347m in 3652s in the garage environment, our method
finishes the exploration.

Tables II and III compares the exploration efficiency
and algorithm runtime between our method and the other
methods. In Table II, ε(m3/s) is the average value of the
efficiency of all runs. The efficiency of one run is defined
as the average explored volume per second in that run.
rε is the relative efficiency compared to our method. The
average runtime of our method is the smallest in all evaluated
environments. With dynamically-expanded RRT, our method
does not need to regenerate a new dense local tree every

TABLE III: Comparison of planning time
Average Runtime (s) CPU Load (%)

NBVP MBP GBP DSVP NBVP MBP GBP DSVP
Indoor 2.48 1.97 1.46 0.81 47 27 26 19

Campus 2.41 3.31 3.08 1.03 37 47 33 19
Garage 1.84 1.71 2.33 0.72 40 22 44 17



(a)

(b)

(c)

(d)

Fig. 8: Simulation results of the garage environment. The figure
shares the same layout as Fig.6.

time, which saves much time especially when the space is
open. Further, our method leverages the global frontiers with
the global graph to eliminate the need of a dense global
graph - the method uses a relatively sparse global graph
to navigate to the vicinity of the global frontiers and then
uses the global frontiers to guide the vehicle further. While
for GBP and MBP, they incrementally add more nodes to
the global RRG by randomly sampling viewpoints in the
relocation mode, which leads to a dense global RRG. In
addition, GBP and MBP need to compute the reward of
each viewpoint in the global RRG continuously to decide
which one has the highest reward, which takes considerable
computation time. Our method, however, neglects the reward
of the viewpoints in the global graph and only checks if
a viewpoint can observe a given frontier, as described in
Algorithm 3, which takes considerably less time.

B. Physical Experiment

We conduct experiments using the vehicle platform in
Fig. 9. The vehicle is equipped with a Velodyne Puck lidar,
a camera at 640× 360 resolution, and a MEMS-based IMU.
The system uses our prior method for state estimation as well

Fig. 9: Experiment vehicle platform

as mapping explored areas [24]. The system also incorporates
navigation modules from our benchmark environment, e.g.
collision avoidance, terrain traversability analysis, way-point
following, as the mid-layer. During exploration, the collision
avoidance module [23] further prevents collisions and war-
rants safety. Our exploration algorithm is at the top layer in
the system, running on a computer with a 4.1GHz i7 CPU.

The experiment is conducted in an outdoor environment
at the university campus as shown in Fig. 10. The en-
vironment includes several intersections, dead ends and
trees. Fig. 10a gives the final trajectories of all methods.
The trajectory of NBVP reveals considerable back-and-forth
behaviors through the whole process. One issue of MBP
and GBP is that they have trouble handling thin structures
such as tree branches. The reason is relevant to what is
mentioned above that they extend the global RRG randomly
in the relocation mode. Due to the fact that the sampled
viewpoints in relocation mode are distant from the robot,
lidar scan data can miss the thin structures causing the
places to be considered traversable. As the vehicle navigates
closer, the sampled viewpoints are not effectively eliminated
from the global graph, causing the vehicle to be trapped
around trees. In contrast, our method actively eliminates
edges on the local RRT and global graph that interfere with
obstacles. This gives our method the advantage of dealing
with thin structures in the environment from which laser
returns are inconsistent. Fig. 10b and Fig. 10c compare the
explored volume and traveling distance of four methods.
NBVP spends 2160s covering 8677m3 while our method
spends 322s covering the same space. GBP spends 1984s
covering 15192m3 which only takes 843s for our method.
MBP explores almost the same space as our method while
the time is almost double. Fig. 10d shows the runtime of each
method. The average runtime for NBVP is 2.02s, for GBP
is 3.9s and for MBP is 1.05s. The average runtime for our
method is 1.4s. Even though our runtime is slightly longer
than MBP, the variation is much smaller as one can see a
large spike in the runtime of MBP.

VI. CONCLUSION

We propose a method for efficiently exploring environ-
ments at a high-degree of convolution. By switching between
exploration stage and relocation state, our method is able to
cover the entire environment. The method dynamically ex-
pand the local RRT and global graph, and use hybrid frontiers
to guide the expansion. We evaluate the method in a real



(a)

(b)

(c)

(d)

Fig. 10: Results of the experiment in an outdoor environment. (a)
is the resulting map of our method and trajectories of all methods.
The blue dot indicates the start point of all trajectories. (b) is the
explored volumes vs. time.(e) is the traveling distances vs. time. (f)
is the runtime vs. time.

outdoor environment and three simulation environments, i.e.
indoor, campus and garage environments in the benchmark
environment that we develop to facilitate development of
autonomous navigation systems. Our method is compared to
three state-of-art methods. The results show that our method
covers the space twice as fast as the other methods while
taking less computation.

REFERENCES

[1] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” Tech. Rep., 1998.

[2] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart,
“Receding horizon" next-best-view" planner for 3D exploration,” in
IEEE International Conference on Robotics and Automation (ICRA),
Stockholm, Sweden, May 2016.

[3] B. Yamauchi, “A frontier-based approach for autonomous exploration,”
in Proceedings 1997 IEEE International Symposium on Computational
Intelligence in Robotics and Automation, 1997, pp. 146–151.

[4] D. Holz, N. Basilico, F. Amigoni, and S. Behnke, “Evaluating the ef-
ficiency of frontier-based exploration strategies,” in 41st International
Symposium on Robotics (ISR) and 6th German Conference on Robotics
(ROBOTIK), 2010, pp. 1–8.

[5] Z. Meng, H. Qin, Z. Chen, X. Chen, H. Sun, F. Lin, and M. H. Ang, “A
two-stage optimized next-view planning framework for 3-d unknown
environment exploration, and structural reconstruction,” IEEE Robotics
and Automation Letters, vol. 2, no. 3, pp. 1680–1687, 2017.

[6] B. Fang, J. Ding, and Z. Wang, “Autonomous robotic exploration based
on frontier point optimization and multistep path planning,” IEEE
Access, vol. 7, pp. 46 104–46 113, 2019.

[7] C. Dornhege and A. Kleiner, “A frontier-void-based approach for
autonomous exploration in 3D,” Advanced Robotics, vol. 27, no. 6,
pp. 459–468, 2013.

[8] L. Heng, A. Gotovos, A. Krause, and M. Pollefeys, “Efficient visual
exploration and coverage with a micro aerial vehicle in unknown
environments,” in IEEE International Conference on Robotics and
Automation (ICRA), Seattle, WA, May 2015.

[9] T. Cieslewski, E. Kaufmann, and D. Scaramuzza, “Rapid exploration
with multi-rotors: A frontier selection method for high speed flight,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Vancouver, Canda, Sept. 2017.

[10] M. Selin, M. Tiger, D. Duberg, F. Heintz, and P. Jensfelt, “Efficient
autonomous exploration planning of large-scale 3-d environments,”
IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1699–1706,
2019.

[11] C. Wang, H. Ma, W. Chen, L. Liu, and M. Q.-H. Meng, “Efficient
autonomous exploration with incrementally built topological map
in 3-d environments,” IEEE Transactions on Instrumentation and
Measurement, vol. 69, no. 12, pp. 9853–9865, 2020.

[12] M. Dharmadhikari, T. Dang, L. Solanka, J. Loje, H. Nguyen,
N. Khedekar, and K. Alexis, “Motion primitives-based agile ex-
ploration path planning for aerial robotics,” in IEEE International
Conference on Robotics and Automation (ICRA), Paris, France, May
2020.

[13] T. Dang, M. Tranzatto, S. Khattak, F. Mascarich, K. Alexis, and
M. Hutter, “Graph-based subterranean exploration path planning using
aerial and legged robots,” Journal of Field Robotics, vol. 37, no. 8,
pp. 1363–1388, 2020.

[14] R. Reinhart, T. Dang, E. Hand, C. Papachristos, and K. Alexis,
“Learning-based path planning for autonomous exploration of subter-
ranean environments,” in IEEE International Conference on Robotics
and Automation (ICRA), Paris, France, May 2020.

[15] T. Chen, S. Gupta, and A. Gupta, “Learning exploration policies for
navigation,” in Proceedings of Seventh International Conference on
Learning Representations (ICLR), New Orleans, LA, May 2019.

[16] F. Niroui, K. Zhang, Z. Kashino, and G. Nejat, “Deep reinforcement
learning robot for search and rescue applications: Exploration in
unknown cluttered environments,” IEEE Robotics and Automation
Letters, vol. 4, no. 2, pp. 610–617, 2019.

[17] T. Kollar and N. Roy, “Trajectory optimization using reinforcement
learning for map exploration,” The International Journal of Robotics
Research, vol. 27, no. 2, pp. 175–196, 2008.

[18] M. Kulich, J. Faigl, and L. Přeučil, “On distance utility in the
exploration task,” in IEEE International Conference on Robotics and
Automation (ICRA), Shanghai, China, May 2011.

[19] M. Kulich, J. Kubalík, and L. Přeučil, “An integrated approach to goal
selection in mobile robot exploration,” Sensors, vol. 19, no. 6, 2019.

[20] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[21] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “Octomap: An efficient probabilistic 3d mapping framework
based on octrees,” Autonomous robots, vol. 34, no. 3, pp. 189–206,
2013.

[22] E. J. Keogh and M. J. Pazzani, “Derivative dynamic time warping,”
in Proceedings of the 2001 SIAM international conference on data
mining. SIAM, 2001, pp. 1–11.

[23] J. Zhang, C. Hu, R. G. Chadha, and S. Singh, “Falco: Fast likelihood-
based collision avoidance with extension to human-guided navigation,”
Journal of Field Robotics, vol. 37, no. 8, pp. 1300–1313, 2020.

[24] J. Zhang and S. Singh, “Laser-visual-inertial odometry and mapping
with high robustness and low drift,” Journal of Field Robotics, vol. 35,
no. 8, pp. 1242–1264, 2018.


	Introduction
	Releated Work
	Methodology
	Exploration Stage
	Relocation Stage

	Benchmark Environment
	Experiments
	Evaluation in Benchmark Environment
	Physical Experiment

	Conclusion
	References

